Skip to content

Combination of Functionals

Tuesday, December 3, 2019

The following lemma applies Hahn-Banach theorem in a tricky way.

Suppose [1] Λ1,,Λn\Lambda_{1}, \ldots, \Lambda_{n} and Λ\Lambda are linear functionals on a vector space X.X . We define N:={x:Λ1x==Λnx=0}N:=\{ x: \Lambda_{1} x=\cdots=\Lambda_{n} x=0 \}. Then the following three properties are then equivalent:

  1. There are scalars α1,,an\alpha_{1}, \ldots, a_{n} such that
    Λ=α1Λ1++αnΛn; \Lambda = \alpha_1 \Lambda_1 + \cdots + \alpha_n \Lambda_{n};
  2. There exists γ<\gamma < \infty such that
    Λxγmax1inΛix,xX; \Lambda x \leq \gamma \max _{1 \leq i \leq n} \left| \Lambda_{i} x\right|, \quad \forall x \in X;
  3. Λx=0\Lambda x=0 for every xNx \in N.

It is clear that (1) implies (2) and that (2) implies (3). Assume (3) holds. Let Φ\Phi be the scalar field. Define π:XΦn\pi: X \rightarrow \Phi^{n} by

π(x)=(Λ1x,,Λnx).\pi(x)=\left(\Lambda_{1} x, \ldots, \Lambda_{n} x\right).

If π(x)=π(x)\pi(x)=\pi\left(x^{\prime}\right), then (3) implies Λx=Λx.\Lambda x=\Lambda x^{\prime}. Hence f(π(x))=Λxf(\pi(x))=\Lambda x defines a linear functional ff on π(X).\pi(X). Extend ff to a linear FF on Φn\Phi^n. This means that there exist α1,,αn\alpha_1,\ldots,\alpha_n such that

F(u1,,un)=α1u1++αnun. F\left(u_{1}, \ldots, u_{n}\right)=\alpha_{1} u_{1}+\cdots+\alpha_{n} u_{n}.
Thus
Λx=F(π(x))=F(Λ1x,,Λnx)=i=1nαiΛix, \Lambda x=F(\pi(x))=F\left(\Lambda_{1} x, \ldots, \Lambda_{n} x\right) =\sum_{i=1}^{n} \alpha_{i} \Lambda_{i} x,
which is (1).


  1. Walter Rudin. Analyse fonctionnelle. French. Trans. English by Adbdellatif Abouhazim.1995. Chap. 3, p. 63. ↩︎