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1.7 Doléans equation and Girsanov Theorem . . . . . . . . . . . . . . . . . . . 14

2 Quantum Mechanics 17

2.1 The Linear Stochastic Master Equation . . . . . . . . . . . . . . . . . . . 17

2.2 Existence and Uniqueness of Solution to Linear Statistical SDE . . . . . . 19

2.3 The Stochastic Master Equation . . . . . . . . . . . . . . . . . . . . . . . 23

Bibliography 28

iv



Chapter 1

Background theory

1.1 Wiener process

The goal of the theory of stochastic processes is to construct and study mathematical

models of physical systems which evolve in time according to a random mechanism.

Thus, a stochastic process will be a family of random variables indexed by time.

Definition 1.1 (Stochastic process). Let T be a set, (E, E) a measurable space. A

stochastic process indexed by T, taking its values in (E, E), is a family of measurable

mappings Xt, t ∈ T, from a probability space (Ω,F ,P) into (E, E). The space (E, E) is

called the state space.

Definition 1.2. Let E be a topological space and E the σ-algebra of its Borel subsets.

A process X with values in (E, E) is said to be a.s. continuous if, for almost all ω, the

function t 7→ Xt(ω) is continuous.

In our discussion we deal with the case T = R+ := [0,+∞[ and E will usually be Rd and

E the Borel σ-algebra on E. An n-dimensional complex state space is always identified

with a 2n-dimensional real state space.

Suppose (Ω,F ,P) be a probability space. A filtration is a family (Ft)t≥0 of increas-

ing sub-σ-algebras of F , i.e., Fs ⊂ Ft ⊂ F for 0 ≤ s < t < +∞. Sometimes,(
Ω,F , (Ft)t≥0 ,P

)
is said to be a stochastic basis. Typically, a filtration describes the

accumulation of information during time: each Ft is the collection of all the events which

we can decide whether they have been verified or not up to time t.

Let us denote by N the class of all P-null sets in F , i.e.,

N := {A ∈ F : P(A) = 0}

1



CHAPTER 1. BACKGROUND THEORY 2

Definition 1.3. The filtration is said to be right continuous if Ft = Ft+ for all t ≥ 0,

where Ft+ is the σ-algebra of events decidable immediately after t, i.e.,

Ft+ :=
⋂
s:s>t

Fs.

The stochastic basis (or the filtration) is said to satisfy the usual conditions if the

filtration is right continuous and F0 contains N . Obviously N ⊂ F0 implies N ⊂
Ft,∀t ≥ 0.

Definition 1.4. A process X is adapted to a filtration (Ft)t≥0 if Xt is Ft-measurable

for all t ≥ 0.

A Wiener process W is a Gaussian process, that is: for any sequence 0 = t0 <

t1 < . . . < tn, the vector r.v. (Wt0 , . . . ,Wtn) is a vector Gaussian r.v., with independent

and stationary increments (which will be clear later), with mean zero and variance pro-

portional to t, or covariance matrix proportional to t1 (1 means an identity matrix) in

the multidimensional case. It is usual to take it exactly equal to t1 (standard Wiener

process). At the price of a modification, it is always possible to obtain continuous trajec-

tories. Moreover, for the developments of stochastic calculus, where adapted processes

are integrated with respect to Wiener processes, it is convenient to include the filtration

in the definition of Wiener process. Without loss of generality, we have the following

definition.

Definition 1.5. Let
(

Ω,F , (Ft)t≥0 ,P
)

be a stochastic basis. A d-dimensional Wiener

process W ≡ {Wj(t), t ≥ 0, j = 1, . . . , d} is a continuous, Rd-valued, adapted process

with the following properties:

1. W (0) = 0 a.s.;

2. for 0 ≤ s < t < +∞ the increment W (t)−W (s) is normal with vector of means 0

and covariance matrix (t− s)1;

3. for 0 ≤ s < t < +∞ the increment W (t)−W (s) is independent of Fs.

Remark 1.6. It would be equivalent to define a one-dimensional Wiener process and to

say that a d-dimensional Wiener process is a collection of d independent one-dimensional

Wiener processes. So for most of the cases, discussion of a one-dimensional Wiener is

already enough for us.

From now on, we shall usually denote by Wt the time t slice of a one-dimensional Wiener

process and by Wj(t) the time t slice of the jth component of a multidimensional Wiener
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process. One can tell from the notation whether we are talking about Wiener process

as multidimensional process or not.

For the existence of Wiener process, we restate Theorem (1.8) Chpater I, p.19 in [4]

here:

Theorem 1.7. There exists an almost surely continuous process W with independent

increments such that for each t, the random variable Wt is centered, Gaussian and has

variance t.

The properties stated in Theorem (1.7) imply those we already know. For instance, for

s < t, the increments Wt−Ws are Gaussian centered with variance t− s; indeed, we can

write

Wt = Ws + (Wt −Ws)

and using the independence of Ws and Wt −Ws, we get, by considering characteristic

functions,

exp

(
− tu

2

2

)
= exp

(
−su

2

2

)
E [exp (iu (Wt −Ws))]

whence E [exp (iu (Wt −Ws))] = exp
(
− (t−s)

2 u2
)

follows. We have an equivalence in

the theorem between assertions var(Wt) = t and cov(Wt,Ws) = min(t, s). Indeed, if as

proven above (supposing t > s) var(Wt −Ws) = t − s, i.e., E[(Wt −Ws)
2)] = t − s we

then have E[W 2
t + W 2

s ] − 2E(WtWs) = var(Wt) + var(Ws) − 2 cov(Wt,Ws) = t + s −
2 cov(Wt,Ws) = t− s; so cov(Wt,Ws) = min(s, t) = s.

By discarding a negligible set, we may, and often will, consider that all paths of W are

continuous.

1.2 Martingale and Quadratic Variations

Definition 1.8. Let X be a process adapted to a filtration (Ft)t≥0 and each Xt be

integrable. We say that X is a martingale with respect to (Ft)t≥0 , if E[Xt|Fs] = Xs for

all 0 ≤ s ≤ t.

Then a martingale is a stochastic process where the prediction of the trajectory at the

time t with respect to the past time before s is simply the trajectory at the time s. We

can interpret E [X(t)|Fs] by saying that past and present (the present is s ) are frozen

and we take the mean of X(t) only with respect to all the stochasticity entering into

play in the future.

Definition 1.9. Given a filtration (Ft)t≥0, a random variable τ : Ω→ [0,+∞] is called

a stopping time, or, better, an (Ft)-stopping time, if {τ ≤ t} ∈ Ft for all t ≥ 0.
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A stopping time describes the occurrence instant of a random phenomenon observed

during the random experiment related to (Ft). An example in real life might be the

time at which a gambler leaves the gambling table, which might be a function of their

previous winnings (for example, he might leave only when he goes broken), but he can’t

choose to go or stay based on the outcome of games that haven’t been played yet.

Definition 1.10. A process X is called measurable if the function [0,+∞) × Ω 3
(t, ω) 7→ X(t, ω) is B([0 +∞))⊗F-measurable.

We need the joint measurability in t and ω, for instance, when we want to exchange an

integral over time and an expectation by invoking Fubini theorem.

Definition 1.11. A process X is called progressively measurable or progressive if for

every T ≥ 0 the function [0, T ]× Ω 3 (t, ω) 7→ X(t, ω) is B([0, T ])⊗FT -measurable.

Trivially, a progressive process is adapted and measurable.

Remark 1.12. If τ is a finite stopping time and X is a measurable process, then ω 7→
X(τ(ω), ω) is a random variable. In this statement the joint measurability in (t, ω) of X

is crucial in order that X(τ) be F-measurable. Moreover, if τ is a stopping time, then

τ ∧ t := min{τ, t} is a finite stopping time and, if X is a progressive process, X(t ∧ τ)

is an Ft-measurable random variable and the stopped process {X(t ∧ τ), t ≥ 0}, usually

written as Xτ , is a progressive process. Again the progressive character of X is crucial

in order that the stopped process be adapted.

Proposition 1.13. If M is a continuous martingale and T a stopping time, the stopped

process MT , i.e., {M(t ∧ T ), t ≥ 0} is a martingale with respect to (Ft).

Proof. The process MT is obviously continuous and adapted. Firstly we use a weak

form of optional stopping theorem, saying that a martingale has equal expectation at

any bounded stopping time. If S is a bounded stopping time, so is S ∧ T ; hence

E
[
MT
S

]
= E [MS∧T ] = E [M0] = E

[
MT

0

]
.

Then we use this conclusion twice to get our desired equality. If s < t and A ∈ Fs the

r.v. T = t1Ac + s1A is a stopping time and consequently

E [X0] = E [XT ] = E [Xt1Ac ] + E [Xs1A] .

On the other hand, t itself is a stopping time, and

E [X0] = E [Xt] = E [Xt1Ac ] + E [Xt1A] .
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Comparing the two equalities yields Xs = E [Xt|Fs] .

Definition 1.14. A process X is a local martingale, with respect to a filtration (Ft)t≥0,

if there exists an increasing sequence of stopping times τn such that τn −→
n→+∞

+∞ a.s.

and
{
X(t∧τn), t ≥ 0

}
is an (Ft)-martingale for all n.

Definition 1.15. A process A is of finite variation if it is adapted and the paths t →
At(ω) are finite, continuous and of finite variation for almost every ω.

Proposition 1.16. A continuous martingale M cannot be of finite variation unless it

is constant.

Proof. We may suppose that M0 = 0 and prove that M is identically zero if it is of finite

variation. Let Vt be the variation of M on [0, t] and define a stopping time

Sn = inf {s : Vs ≥ n} ;

then the martingale (by Proposition 1.13) MSn , i.e., the stopped process {M(t∧Sn), t ≥
0}, is of bounded variation. Thus, it is enough to prove the result whenever the variation

of M is bounded by a number K.

Let ∆ = {t0 = 0 < t1 < . . . < tk = t} be a subdivision of [0, t]; we have

E
[
M2
t

]
= E

[
k−1∑
i=0

(
M2
ti+1
−M2

ti

)]

= E

[
k−1∑
i=0

(
Mti+1 −Mti

)2]

since M is a martingale. As a result,

E
[
M2
t

]
≤ E

[
Vt

(
sup
i

∣∣Mti+1 −Mti

∣∣)] ≤ KE

[
sup
i

∣∣Mti+1 −Mti

∣∣]
when the modulus of ∆ goes to zero, this quantity goes to zero since M is continuous,

hence M = 0 a.s..

Because of this proposition, we will not be able to define integrals with respect to M by a

path by path procedure as Stieltjes integral. We will have to use a global method in which

the notions we are about to introduce play a crucial role. If ∆ = {t0 = 0 < t1 < . . .} is

a subdivision of R+ with only a finite number of points in each interval [0, t] we define,

for a process X

T∆
t (X) =

k−1∑
i=0

(
Xti+1 −Xti

)2
+ (Xt −Xtk)2
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where k is such that tk ≤ t < tk+1; we will write simply T∆
t if there is no risk of confusion.

Definition 1.17. X is said to be of finite quadratic variation if there exists a process

〈X,X〉 such that for each t, T∆
t converges in probability to 〈X,X〉t as the modulus of

∆ on [0, t], i.e., supi |ti+1 − ti|, goes to zero.

To be concrete, we caculate quadratic variation for one-dimensional Wiener process.

Proposition 1.18. Let W be a one-dimensional Wiener process (also called Brownian

motion in mathematical literature), we have 〈W,W 〉t = t.

Proof. Let ∆ = {t0 = 0 < t1 < . . . < tn = t} be a subdivision of [0, t], and define Xi =

Wti − Wti−1 for i = 1, 2, . . . , n. We should have {Xi} are independent and E[X2
i ] =

ti − ti−1, ∥∥∥∥∥∑
i

X2
i − t

∥∥∥∥∥
2

2

= E

(∑
i

(
X2
i − (ti − ti−1)

))2


and since for a centered Gaussian r.v. Y, E[Y 4] = 3E[Y 2]2, this is equal to

2
∑
i

(ti − ti−1)2 ≤ 2t sup
i
|ti+1 − ti|,

which completes the proof.

Theorem 1.19. If M is a continuous local martingale, there exists a unique increasing

continuous process 〈M,M〉, vanishing at zero, such that M2 − 〈M,M〉 is a continuous

local martingale. Moreover, for every t and for any sequence {∆n} of subdivisions of

[0, t] such that |∆n| → 0, the r.v.’s

sup
s≤t

∣∣T∆n
s (M)− 〈M,M〉s

∣∣
converge to zero in probability.

Proof. See Theorem (1.8), Chapter IV, p. 124 in [4].

If M and N are two local martingale we get their “bracket product” by polarization:

〈M,N〉t =
1

2
(〈M +N,M +N〉t − 〈M,M〉t − 〈N,N〉t) .

Definition 1.20. The process 〈M,N〉 is called the bracket of M and N , and the process

〈M,M〉 is called the increasing process associated with M or simply the increasing

process of M.
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A slightly generalized concept form martingale will ease our discussion in next section.

Definition 1.21. A process X = (Xt)t≥0 is a continuous semimartingale if it can be

written as Xt = M +A where M is a local martingale, A is a finite variation process.

Proposition 1.22. A continuous semimartingale X = M + A has a finite quadratic

variation and we have 〈X,X〉 = 〈M,M〉.

Proof. If ∆ is a subdivision of [0, t],∣∣∣∣∣∑
i

(
Mti+1 −Mti

) (
Ati+1 −Ati

)∣∣∣∣∣ ≤
(

sup
i

∣∣Mti+1 −Mti

∣∣)Vart(A)

where Vart(A) is the variation of A on [0, t], and this converges to zero when |∆| tends

to zero because of the continuity of M . Likewise

lim
|∆|→0

∑
i

(
Ati+1 −Ati

)2
= 0

1.3 Stochastic integral

When {ω ∈ Ω : X(t, ω) = Y (t, ω),∀t ≥ 0} is measurable, which is usually true when

some regularity properties hold for the trajectories of the two processes, we can say that

X and Y are indistinguishable if

P[X(t) = Y (t),∀t ≥ 0] = 1.

In this section, we introduce some basic techniques and notions which will be used

throughout the sequel. Once and for all, we consider below, a filtered probability space

(Ω,F , (Ft)t≥0,P) and we suppose that each Ft contains all the sets of P-measure zero

in F . As a result, any limit (almost-sure, in the mean, etc.) of adapted processes is

an adapted process; a process which is indistinguishable from an adapted process is

adapted.

Let A be a continuous process with finite variation. One can clearly integrate appropriate

functions with respect to the measure associated to A(ω) and thus obtain a “stochastic

integral”. More precisely, if X is progressively measurable and—for instance—bounded

on every interval [0, t] for a.e. ω, one can define for a.e. ω, the Stieltjes integral

(X ·A)t(ω) =

∫ t

0
Xs(ω) dAs(ω).
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If ω is in the set where A.(ω) is not of finite variation or X.(ω) is not locally integrable

with respect to dA(ω), we put (X · A) = 0. We then check that the process X · A
thus defined is of finite variation. The hypothesis that X be progressively measurable

is precisely made to ensure that X · A is adapted (this is a proposition from measure

theory, see Corollary (3.3.3), Chapter 3, p.182 in [2] for more detail). It is the “stochastic

integral” of X with respect to the process A of finite variation.

We will indulge in the usual confusion between processes and classes of indistinguishable

processes in order to get norms and not merely semi-norms in the discussion below.

Definition 1.23. We denote by H2 the set of L2-bounded continuous martingales, i.e.,

the space of continuous (Ft,P)-martingales M such that

sup
t

E
[
M2
t

]
< +∞.

and H2
0 the subset of elements of H2 vanishing at zero.

Definition 1.24. If M ∈ H2, we call L 2(M) the space of progressively measurable

processes K such that

‖K‖2M = E

[∫ ∞
0

K2
s d〈M,M〉s

]
< +∞

As usual, L2(M) will denote the space of equivalence classes of elements of L 2(M); it

is of course a Hilbert space for the norm ‖ · ‖M .

Theorem 1.25. Let M ∈ H2; for each K ∈ L2(M), there is a unique element of H2
0

denoted by K ·M , such that

〈K ·M,N〉 = K · 〈M,N〉.

Proof. See Theorem (2.2), Chapter IV, p.127 in [4].

Definition 1.26. The martingale K ·M is called the stochastic integral (also called the

Itô integral) of K with respect to M and is also denoted by∫ .

0
Ks dMs.

The resulting process of Itô integral is a martingale.

Remark 1.27. Since the Brownian motion (one-dimensional Wiener process) stopped at

a fixed time t is in H2, if K is a process which satisfies

E

[∫ t

0
K2
s ds

]
< +∞, for all t,
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we can define
∫ t

0 Ks dWs for each t hence on the whole positive half-line and the resulting

process is a martingale although not an element of H2.

1.4 Itô formula

This section is fundamental. It is devoted to a “change of variables” formula for stochas-

tic integrals which makes them easy to handle and thus leads to explicit computations.

Another way of viewing this formula is to say that we are looking for functions which

operate on the class of continuous semimartingales, that is, functions F such that F (Xt)

is a continuous semimartingale whatever the continuous semimartingale X is. However,

to be fully prepared for it, we need to extend our result to semimartingale in previous

section without proof here.

Definition 1.28. If M is a continuous local martingale, we call L2
loc (M) the space of

classes of progressively measurable processes K for which there exists a sequence (Tn)

of stopping times increasing to infinity and such that

E

[∫ Tn

0
K2
s d〈M,M〉s

]
< +∞.

Observe that L2
loc (M) consists of all the progressive processes K such that∫ t

0
K2
s d〈M,M〉s <∞ for every t.

Proposition 1.29. For any K ∈ L2
loc(M), there exists a unique continuous local mar-

tingale vanishing at 0 denoted K ·M such that for any continuous local martingale N

〈K ·M,N〉 = K · 〈M,N〉.

Proof. See proposition (2.7), Chpater IV, p.120 in [4].

Definition 1.30. If K is locally bounded and X = M +A is a continuous semimartin-

gale, the stochastic integral of K with respect to X is the continuous semimartingale

K ·X = K ·A+K ·M

where K ·M is the integral of Proposition 1.29 and K ·A is the pathwise Stieltjes integral

with respect to dA. The semimartingale K ·X is also written∫ .

0
Ks dXs.
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Theorem 1.31 (Itô formula). Let X be a semimartingale and F : R→ R a function of

class C2, then

F (Xt) = F (X0) +

∫ t

0
F ′ (Xs) dXs +

1

2

∫ t

0
F ′′ (Xs) d〈X,X〉s.

And if we consider d continuous semimartingales X1, . . . , Xd and F : Rd → R of class

C2 then,

F
(
X1
t , . . . , X

d
t

)
=F

(
X1

0 , . . . , X
d
0

)
+

d∑
i=1

∫ t

0

∂F

∂xi

(
X1
s , . . . , X

d
s

)
dXi

s

+
1

2

d∑
i,j=1

∫ t

0

∂2F

∂xi∂xj

(
X1
s , . . . , X

d
s

)
d
〈
Xi, Xj

〉
s

Proof. See Theorem (3.3), Chapter IV, p.147 in [2].

We often apply Itô formula in a special case F (x) = x2.

Proposition 1.32 (Integration by parts). If X and Y are two continuous semimartin-

gale, we have

XtYt = X0Y0 +

∫ t

0
Xs dYs +

∫ t

0
Ys dXs + 〈X,Y 〉t

The term 〈X,Y 〉 is zero if X or Y has finite variation.

We then give an application of Itô formula. Many continuous processes we care about

in practice satisfies an equation of the form

Xt = x0 +

∫ t

0
b (s,Xs) ds+

∫ t

0
σ (s,Xs) dWs,

or in a differential form,

{
dXt = b (t,Xt) dt+ σ (t,Xt) dWt

X0 = x0

.

As we saw with Itô formula, there is a close link between probability theory and classic

differential equations, and this type of stochastic differential equation (simply called

SDE, we will define it formally later) above allows us to switch from one to the other.

To illustrate our point, we will introduce some classic SDEs and show how to find their

solutions. On the other hand, as soon as the equation becomes more complex, as in the

deterministic case, it turns out that those simple methods are no longer accessible and

then the question of existence and uniqueness of solutions arises.
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Let’s start with a simple SDE:{
dXt = µXt dt+ σXt dWt

X0 = x0 > 0

where the constants µ and σ are in R and ]0,∞[ respectivly. To solve this SDE, we will

use the Itô formula and look for a solution of the form Xt = f (Wt, t) . Then we get:

dXt = fx (Wt, t) dWt +

(
1

2
fxx (Wt, t) + ft (Wt, t)

)
dt

where fx et ft are the first derivatives of f in respectively space and time and fxx is the

second derivative in space. By identifying the coefficients, we have:{
µf(x, t) = 1

2fxx(x, t) + ft(x, t)

σf(x, t) = fx(x, t)

A solution of the second equation is of the form f(x, t) = exp(σx+ g(t)), where g is an

arbitrary function. So, by substituting it into the first equation, we find that g has to

satisfy g′(t) = µ− σ2/2. As a result, we get a solution

Xt = x0 exp

(
σWt +

(
µ− σ2

2

)
t

)
For the moment, we must admit that there may be other solutions to this SDE. We will

see later that in fact it is the unique solution. Regarding this process, we note a strange

phenomenon: since Wt/t → 0 a.s. when t → ∞, we know that Xt → 0 a.s. in the case

where σ2 > 2µ; but we also have E [Xt] = x0e
µt. That is to say, Xt tend towards 0 a.s.

whereas on average it tends towards infinity at an exponential rate.

This SDE is a particular easy case of a more general class of SDE where we can get a

theorem of existence and uniqueness of solution under some conditions that is close to

Cauchy-Lipschitz condition in ODE.

1.5 Solution of SDE

To be strict in the sense of mathematics, in the section we give a formal description of

SDE with coefficients which are non-random functions of the unknown process taken

only at the last time. We fix a stochastic basis (Ω,F ,P), and consider an equivalent

relation: two processes X and X ′ are equivalent if

P

[∫ +∞

0

∣∣X(t)−X ′(t)
∣∣ dt = 0

]
= 1.
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We define Lp as the linear space of the (equivalence classes of) progressively measurable

complex processes X such that

P

[∫ t

0
|X(s)|p ds < +∞

]
= 1, ∀t ≥ 0.

A process {X(t), t ≥ t0 ≥ 0} is called Itô process if it is a continuous, adapted process

such that, for every t ≥ t0

Xi(t) = Xi (t0) +

∫ t

t0

Fi(s) ds+
d∑
j=1

∫ t

t0

Gij(s) dWj(s), i = 1, . . . , n.

with Xi (t0) being Ft0-measurable and Fi ∈ L1, Gij ∈ L2. Wj here is the jth component

of a d-dimensional Wiener process. It is usual to say that X has initial value Xi (t0) and

it admits the stochastic differential

dXi(t) = Fi(t) dt+
d∑
j=1

Gij(t) dWj(t).

Note that if we apply Itô formula to f(Xt, t) when f is twice differentiable, we then get

another Itô process:

f(X(t), t) =f (X (t0) , t0) +

∫ t

t0

[
ft(X(s), s) +

∑
i

fi(X(s), s)Fi(s)

+
1

2

∑
ikj

fik(X(s), s)Gij(s)Gkj(s)

ds

+
∑
ij

∫ t

t0

fi(X(s), s)Gij(s)dWj(s)

where we set ft(x, t) := ∂f(x,t)
∂t , fi(x, t) := ∂f(x,t)

∂xi
, fik(x, t) := ∂2f(x,t)

∂xi∂xk
.

Hypothesis 1.33. Let b and σj , j = 1, . . . , d, be (Borel) measurable deterministic func-

tions from Cn × [t0, T ] to H := Cn.

Deterministic here means independent of (Ω,F ,P). We consider the SDE

dX(t) = b(X(t), t) dt+

d∑
j=1

σj(X(t), t) dWj(t) (1.1)

for processes X with values in Cn.
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A solution of (1.1) with initial condition X (t0) = η is an Itô process satisfying (a.s.,

∀t ≥ t0)

X(t) = η +

∫ t

t0

b(X(s), s) ds+
d∑
j=1

∫ t

t0

σj(X(s), s) dWj(s) (1.2)

Definition 1.34. The SDE (1.1) admits strong solutions if, for any choice of a stochastic

basis satisfying usual conditions with a Wiener process W and for every x0 ∈ H, there

exists a continuous adapted process X such that Eq. (1.2) holds with η = x0.

Definition 1.35. A weak solution of the SDE (1.1) with an initial condition with law µ is

a stochastic basis (Ω,F , (Ft) ,P) satisfying the usual conditions, with a Wiener process

W, an H-valued Ft0-measurable random variable η ∼ µ and an adapted, continuous

process X such that for every t ≥ t0 Eq. (1.2) holds.

Definition 1.36. The solution of the SDE (1.1) is unique in law if, taken any two

solutions (Ω,F , (Ft) , P ) ,W, η,X and (Ω′,F ′, (F ′t) , P ′) ,W ′, η′, X ′, with η ∼ η′ then the

processes X and X ′ have the same law.

Definition 1.37. The solution of the SDE (1.1) is pathwise unique if taken any two

solutions (Ω,F , (Ft) , P ) ,W, η,X and (Ω,F , (Ft) , P ) ,W, η,X ′, then the processes X

and X ′ are indistinguishable.

1.6 Lipschitz Condition of SDE

The norm ‖A‖ for a matrix A will not be specified but must be fixed, which means these

propositions stay valid for any particular matrix norm. We present a set of hypotheses

which imply existence and uniqueness of the solution of our SDE (1.1).

Hypothesis 1.38 (Global Lipschitz condition). There exists a constant L(T ) > 0 such

that

‖b(x, t)− b(y, t)‖2 +
∑
j

‖σj(x, t)− σj(y, t)‖2 ≤ L(T )‖x− y‖2

for all x, y ∈ Cn and t ∈ [t0, T ]

Hypothesis 1.39 (Linear growth condition). There exists a constant M(T ) > 0 such

that

‖b(x, t)‖+

∑
j

‖σj(x, t)‖2
1/2

≤M(T )(1 + ‖x‖)

for all x ∈ Cn and t ∈ [t0, T ]

Theorem 1.40 (existence-and-uniqueness theorem). Under Hypotheses 1.33, 1.38, 1.39

the SDE (1.1) admits strong solutions in [t0, T ]. Pathwise uniqueness and uniqueness in



CHAPTER 1. BACKGROUND THEORY 14

law hold. And the SDE (1.1) with initial condition η ∈ L2 (Ω,Ft0 ,P;H) has a pathwise

unique solution X in [t0, T ]. The solution satisfies∫ T

t0

E
[
‖X(t)‖2

]
dt < +∞.

If Hypotheses 1.33, 1.38, 1.39 hold for every T > 0, then the SDE (1.1) admits a unique

strong solution in [t0,∞).

Proof. Our conditions are stronger than what we need, see Theorem 2.9, Chapter 5, p.

289 in [3].

When the assumptions of the existence-and-uniqueness theorem hold for every T > 0,

the unique strong solution in [t0,∞) is called a global solution.

1.7 Doléans equation and Girsanov Theorem

Doléans equation is another class of SDE where the coefficient is no longer determin-

istic. Again, let W be a d-dimensional Wiener process defined in a stochastic basis

(Ω,F , (Ft) ,P) satisfying the usual conditions. Let us take some stochastic processes

F ∈ L1, Gj ∈ L2, j = 1, . . . , d, and let us introduce the complex Itô process

X(t) :=

d∑
j=1

∫ t

0
Gj(s) dWj(s) +

∫ t

0
F (s) ds (1.3)

Then, we consider the exponential of X times a generic constant:

Z(t) := z0 exp{X(t)}, z0 ∈ C (1.4)

The process Z is an Itô process, and by Itô formula, we get

Z(t) = z0 +
d∑
j=1

∫ t

0
Z(s)Gj(s) dWj(s) +

∫ t

0
Z(s)

F (s) +
1

2

d∑
j=1

Gj(s)
2

 ds, (1.5)

that is dZ(t) =
∑d

j=1 Z(t)Gj(t) dWj(t) + Z(t)
[
F (t) + 1

2

∑d
j=1Gj(t)

2
]

dt

Z(0) = z0

(1.6)
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The integrals in Eq. (1.3) are well-defined and, so, P[|X(t)| < +∞] = 1. For z0 6= 0,

this implies P[Z(t) = 0] = 0 and, so, Z(t)−1 is a bona fide random variable. Obviously,

Z(t)−1 = exp{−X(t)}/z0 and by Itô formula we get

Z(t)−1 =
1

z0
−

d∑
j=1

∫ t

0
Z(s)−1Gj(s) dWj(s)

+

∫ t

0
Z(s)−1

−F (s) +
1

2

d∑
j=1

Gj(s)
2

 ds.

(1.7)

Proposition 1.41. For F ∈ L1, Gj ∈ L2, j = 1, . . . , d, the process Z, defined by

Eqs.(1.3), (1.4), is the pathwise unique solution of the Doléans equation (1.6).

Proof. Let Y be another solution of (1.6). This means that Y is a continuous, adapted

process, that Y Gj ∈ L2, Y
[
F + 1

2

∑d
j=1G

2
j

]
∈ L1 and that (1.5) holds with Z re-

placed by Y . Then Y (0) exp{−X(0)} = z0, and Itô formula and Eq. (1.7) imply

d(Y (t) exp{−X(t)}) = 0. Being continuous processes we obtain that Y (t) exp{−X(t)} =

z0 for every t ≥ 0 a.s., so that Y and Z are indistinguishable.

We state Girsanov theorem without proof, see Chapter VIII, p.326 in [4] for detailed

discussion. Let (Ft) , t ≥ 0, be a right-continuous filtration with terminal σ-field F∞ and

P and Q two probability measures on F∞. We assume that for each t ≥ 0, the restriction

of Q to Ft is absolutely continuous with respect to the restriction of P to Ft, which will

be denoted by Q C P.

Proposition 1.42. If D is a strictly positive continuous local martingale, there exists

a unique continuous local martingale L such that

Dt = exp

{
Lt −

1

2
〈L,L〉t

}
= E (L)t;

L is given by the formula

Lt = logD0 +

∫ t

0
D−1
s dDs.

If P and Q are equivalent on each Ft, we then have Q = E (L)t · P on Ft for every t,

which we write simply as Q = E (L) · P.

Theorem 1.43. If Q = E (L) · P and M is a continuous P-local martingale, then

M̃ = M −D−1 · 〈M,D〉 = M − 〈M,L〉

is a continuous Q-local martingale. Moreover, P = E (−L̃) · Q
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In particular, if we consider the Brownian motion (one-dimensional Wiener process,

simply written as BM), we should have following result.

Theorem 1.44. If QCP and if B is a (Ft,P)-BM, then B̃ = B−〈B,L〉 is a (Ft,Q)-BM.



Chapter 2

Quantum Mechanics

We discuss two statistic formulations of Schrödinger equation in quantum mechanics,

linear and non-linear form, separately in the first section and the third section. The

former, as we may deduce from the word “linear”, behaves well in theory but appears

indirect in intuitive explanation; the non-linear one, called stochastic master equation

in physical literature, does the opposite. In the second section, we apply results from

previous chapter to study the existence and uniqueness of solution to the linear stochastic

master equation.

2.1 The Linear Stochastic Master Equation

We identify linear operators in finite dimension with their matrix representation. The

trace of an operator A is Tr{A} =
∑

iAii, which does not depend on the chosen basis.

Recall that, for every a, b ∈ C,

Tr{aA+ bB} = aTr{A}+ bTr{B}, Tr{AB} = Tr{BA}

Let us denote by S(H) the set of all statistical operators on a finite vector space H :

S(H) := { all operators ρ on H such that: ρ∗ = ρ, ρ ≥ 0,Tr{ρ} = 1} .

Assumption 2.1. The initial state is a statistical operator ρ0 ∈ S(H), where H ≡ Cn.

The initial state depends on the way the system has been experimentally prepared

and it determines the probability distributions of every measurement performed on the

system.. To introduce the linear stochastic master equation, we give the restrictions on

17
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its coefficients in the next assumption. We define the commutator [A,B] := AB − BA
and anti-commutator {A,B} := AB +BA. And we use the operator norm,

‖A‖ ≡ ‖A‖∞ := sup
ψ∈H:‖ψ‖=1

‖Aψ‖. (2.1)

Assumption 2.2. The process W is a continuous m-dimensional Wiener process in a

stochastic basis (Ω,F , (Ft) ,Q) satisfying usual conditions and F = F∞ :=
∨
t≥0Ft; W

has increments independent of the past. The maps Rj(t),L(t) are linear operators over

the space Mn of n× n complex matrices τ with the structure

Rj(t)[τ ] = Rj(t)τ + τRj(t)
∗

L(t) = L0(t) + L1(t)
,

where

L1(t)[τ ] =

m∑
j=1

(
Rj(t)τRj(t)

∗ − 1

2
{Rj(t)∗Rj(t), τ}

)

L0(t)[τ ] = −i[H(t), τ ] +

d∑
j=m+1

(
Rj(t)τRj(t)

∗ − 1

2
{Rj(t)∗Rj(t), τ}

)
The coefficients Rj(t), H(t) are (non-random) linear operators on H ≡ Cn and H(t) =

H(t)∗. The functions t 7→ H(t) and t 7→ Rj(t) are measurable and such that ∀T ∈
(0,+∞),

sup
t∈[0,T ]

‖H(t)‖ < +∞, sup
t∈[0,T ]

∥∥∥∥∥∥
d∑
j=1

Rj(t)
∗Rj(t)

∥∥∥∥∥∥ < +∞. (2.2)

The linear stochastic master equation is defined as, for an operator-valued process σ :{
dσ(t) = L(t)[σ(t)] dt+

∑m
j=1Rj(t)[σ(t)] dWj(t)

σ(0) = ρ0 ∈ S(H)
, (2.3)

where m and d are two positive integers and m ≤ d.

They are the only two assumptions needed in our discussion and here we collect their

heuristic interpretation in theory of continuous measurements.

• ρ0 is the initial state of the quantum system;

• (Ω,F) is the measurable space of the possible outcomes of our experiment;

• Ft is the collection of events verifiable already at time t;

• the m stochastic processes Wj(t) are the output of the continuous measurement

and their derivatives dWj(t) can be interpreted as instantaneous imprecise mea-

surements of the quantum observables Rj(t) +Rj(t)
∗ performed at time t;
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• the operator H(t) has a role of effective Hamiltonian of the system and that the

operators Rj(t) with indexes j = m+1, . . . , d characterise the unobserved channels.

On the other side we say that the operators Rj(t) with indexes j = 1, . . . ,m,

appearing as coefficients in the diffusive part of SDE (2.3) and in L1(t), characterise

the observed channels. If m < d, that is if the Liouvillian L0(t) is not simply

Hamiltonian, we say that the measurement is incomplete.

• the structure of maps Rj(t),L(t) are determined by the physical probabilities that

involves martingale properties.

We consider also the fundamental solution A(t, s) of the linear SDE (2.3), defined by{
dA(t, s) = L(t) ◦ A(t, s) dt+

∑m
j=1Rj(t) ◦ A(t, s) dWj(t)

A(s, s) = Idn
(2.4)

We call A(t, s) the stochastic evolution map or, borrowing a terminology used in theo-

retical physics, the propagator associated to the linear SDE.

2.2 Existence and Uniqueness of Solution to Linear Sta-

tistical SDE

We introduce the natural two-times filtrations of W :

Gst := σ {Wj(r)−Wj(s), r ∈ [s, t], j = 1, . . . ,m}

G :=
∨
t≥0

G0
t , NG := {A ∈ G : Q(A) = 0}

Ḡst := Gst ∨NG

Let us note that

G ⊂ F , NG ⊂ N ≡ {A ∈ F : Q(A) = 0}, Gst ⊂ Ḡst ⊂ Ft

Moreover,
(
Ω,G,

(
Ḡ0
t

)
,Q
)

is a stochastic basis satisfying usual conditions. Ḡ0
t is the

collection of events verifiable already at time t which effectively regard the continuous

measurement.

Theorem 2.3. Under Assumptions 2.2, the linear stochastic master equation (2.3) ad-

mits continuous strong solutions in [0,+∞). Pathwise uniqueness and uniqueness in law

hold. The solution σ(t) of (2.3) with initial condition σ(0) = ρ0 ∈ S(H), is non-negative.
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Moreover, p(t) := Tr{σ(t)} is a mean one Q-martingale, it is a.s. strictly positive and it

can be written as

p(t) = Tr{σ(t)} = exp


m∑
j=1

[∫ t

0
vj(s) dWj(s)−

1

2

∫ t

0
vj(s)

2 ds

] (2.5)

where

vj(t) := Tr {(Rj(t) +Rj(t)
∗) ρ(t)} = 2 Re Tr {Rj(t)ρ(t)} , (2.6)

ρ(t) := p(t)−1σ(t) (2.7)

The linear SDE (2.4) admits strong solutions in (s,+∞), for every s ≥ 0. Pathwise

uniqueness and uniqueness in law hold. A(t, s) is Q-independent of Fs, Ḡst measurable,

positive, i.e., mapping positive matrices to positive matrices, and continuous in t. More-

over, for 0 ≤ r ≤ s ≤ t one has a.s.

A(t, s) ◦ A(s, r) = A(t, r), σ(t) = A(t, 0) [ρ0] (2.8)

The master equation

T (t, s) = Idn +

∫ t

s
L(r) ◦ T (r, s) dr (2.9)

admits a unique solution in [s,+∞), for every s ≥ 0. Moreover, the solution admits the

representation

T (t, s) = EQ[A(t, s)] (2.10)

it is continuous in t, positive, trace preserving, and it satisfies the composition law :

T (t, r) = T (t, s) ◦ T (s, r), 0 ≤ r ≤ s ≤ t. (2.11)

Proof. Equation (2.3) is for an (n× n)-dimensional process and (2.4) for an (n2 × n2)-

dimensional one; in both cases we have finite dimensional processes. The bounds (2.2)

and the linearity give that the global Lipschitz condition 1.38 and the linear growth

condition 1.39 hold. Then, as the measurability condition 1.33 trivially holds, Theorem

1.40 gives the existence of strong solutions and the uniqueness statements for both SDEs.

By completeness, let us check in detail Hypotheses 1.38 and 1.39 for t ∈ [0, T ]. We make

use of following two norms, the Hilbert-Schmidt norm:

‖A‖2 :=
√

Tr {A∗A} =

√∑
ij

|Aij |2

and the trace norm:

‖A‖1 := Tr{
√
A∗A}.
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First of all, let us note that

‖τ∗τ‖1 = ‖ττ∗‖1 = ‖τ‖22,

which follows from the definitions of the two norms and from the positivity of τ∗τ and

ττ∗. Moreover, for any matrix A we have, recalling that ‖A‖ still stands for operator

norm (2.1),

‖Aτ‖22 = Tr {τ∗A∗Aτ} = Tr {A∗Aττ∗} ≤ ‖A∗A‖ ‖ττ∗‖1 = ‖A‖2‖τ‖22

so that

‖AτA∗‖22 = Tr {Aτ∗A∗AτA∗} = Tr {A∗Aτ∗A∗Aτ}

≤ ‖A∗Aτ∗‖2 ‖A
∗Aτ‖2 ≤ ‖A

∗A‖ ‖τ∗‖2 ‖A
∗A‖ ‖τ‖2 = ‖A∗A‖2 ‖τ‖22

We also set

`T := max

 sup
0≤t≤T

‖H(t)‖, sup
0≤t≤T

∥∥∥∥∥∥
d∑
j=1

Rj(t)
∗Rj(t)

∥∥∥∥∥∥
 ;

by (2.2), `T < +∞. Since
∑

j Rj(t)
∗Rj(t) is a sum of positive operators, we have also

‖Rj(t)‖2 = ‖Rj(t)∗Rj(t)‖ ≤ `T .

In the case of (2.3) the relevant norm, needed in Hypotheses 1.38 and 1.39, is the

Hilbert-Schmidt norm. We have

‖L(t)[τ ]‖2 ≤ 2‖H(t)τ‖2 +

d∑
j=1

‖Rj(t)τRj(t)∗‖2 +

∥∥∥∥∥∥
d∑
j=1

Rj(t)
∗Rj(t)τ

∥∥∥∥∥∥
2

≤ 2‖H(t)‖‖τ‖2 +
d∑
j=1

‖Rj(t)∗Rj(t)‖ ‖τ‖2 +

∥∥∥∥∥∥
d∑
j=1

Rj(t)
∗Rj(t)

∥∥∥∥∥∥ ‖τ‖2
≤ (3 + d)`T ‖τ‖2,

m∑
j=1

‖Rj(t)[τ ]‖22 ≤ 2
m∑
j=1

(
‖Rj(t)τ‖22 + ‖τRj(t)∗‖22

)
≤ 4

m∑
j=1

‖Rj(t)‖2 ‖τ‖22 ≤ 4m`T ‖τ‖22.

These two estimates imply both Hypothesis 1.38 and Hypothesis 1.39.

The proof of existence and uniqueness of the solution of SDE (2.4) is completely similar

and it is based on the estimates

n∑
k,l=1

‖L(t) ◦ A(t; s)[|k〉〈l|]‖22 ≤ (3 + d)2`2T

n∑
k,l=1

‖A(t; s)[|k〉〈l|]‖22,



CHAPTER 2. QUANTUM MECHANICS 22

n∑
k,l=1

m∑
j=1

‖Rj(t) ◦ A(t; s)[|k〉〈l|]‖22 ≤ 4m`T

n∑
k,l=1

‖A(t; s)[|k〉〈l|]‖22,

where {|k〉}nk=1 is a basis in H; here we use Dirac Notations to represent a vector:

〈ψ| = (ψ1, ψ2, . . . , ψn) is row complex vector and |ψ〉 means its conjugated transpose.

The continuity in t of σ(t) and A(t, s) comes from the fact that we are working in

a stochastic basis in usual hypotheses and it is included in Definition 1.34 of strong

solution. Because of the existence of strong solutions and pathwise uniqueness, the

random variable A(t, s) is Ḡst -measurable; then, the statement about the Q-independence

of Fs follows from the independent-increment property of the Wiener process. Moreover,

the two sides of the composition law in (2.8) satisfy the same SDE (2.4) for t ≤ s and

so they are equal by the uniqueness statement of Theorem 1.40. Analogously, σ(t) and

A(t, 0) [ρ0] are a.s. equal because they satisfy the same SDE (2.3) with the same initial

condition.

To prove that A(t, s) is positive we need to introduce another SDE:{
dAst = K(t)Ast dt+

∑d
j=1Rj(t)A

s
t dWj(t)

Ass = 1
(2.12)

Once the operators H(t) and Rj(t) appearing in Assumption 2.2 have been fixed and

the stochastic evolution operator Ast solution of the SDE (2.12) with K(t) = −iH(t)−
1
2

∑d
j=1Rj(t)

∗Rj(t) has been constructed, one can check that the map EQ
[
Ast •As∗t |Ḡst

]
satisfies the same SDE as A(t, s). Since a conditional expectation is a positive map and

the same is true for a map of the type ρ 7→ AρA∗, the map EQ
[
Ast •As∗t |Ḡst

]
is positive.

Therefore, by the uniqueness in law of the solution of the SDE (2.4) A(t, s) is positive,

too.

We can see the master equation (2.9) as a particular case of SDE; by the properties

of the coefficients and Theorem 1.40, for every s ≥ 0 the solution is pathwise unique.

Moreover, by Theorem 1.40, the mean of A(t, s) exists and the stochastic integral in

(2.4) has mean zero, so that EQ[A(t, s)] is well defined and satisfies (2.9). For what

concerns the composition law, the two sides of (2.11) satisfy the same equation with the

same initial condition; they are equal by uniqueness of the solution. The continuity in t

follows from the integral representation (2.10), the positivity from the same property of

A(t, s) and the trace preserving property from the structure of any Liouville operator,

which guarantees Tr{L(r)[τ ]} = 0 for every operator τ.
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The positivity of A(t, 0) and ρ ≥ 0, imply σ(t) ≥ 0. By taking the trace of the linear

stochastic master equation (2.3) we get

Tr{σ(t)} = 1 +
m∑
j=1

∫ t

0
2 Re (Tr {Rj(s)σ(s)}) dWj(s) (2.13)

By the bound (2.2) and the estimate of Theorem 1.40 for the process σ, we have that the

integrand in the equation above is in the class M2; therefore, the stochastic integral is

a Q-martingale by Remark 1.27. Let ρ? be a fixed statistical operator and let us define

ρ(t) =

{
(Tr{σ(t)})−1σ(t), if Tr{σ(t)} > 0

ρ?, if Tr{σ(t)} = 0

Then, (2.13) can be written as

Tr{σ(t)} = 1 +

m∑
j=1

∫ t

0
Tr{σ(s)}vj(s) dWj(s)

where vj is given by (2.6). The solution of this Doléans equation (1.6) is unique and

it is given by (2.5). Being of exponential form, it is strictly positive with probability

one.

2.3 The Stochastic Master Equation

Starting from the linear stochastic master equation (2.3) we introduce the physical

probabilities, the a posteriori states and the a priori states. Let us recall that the

initial state at time zero is the statistical operator ρ0 ∈ S(H).

We define the adjoint of a linear map O : (Mn, ‖ • ‖1)→ (Mn, ‖ • ‖1) as the linear map

O∗ : (Mn, ‖ • ‖∞)→ (Mn, ‖ • ‖∞):

Tr {O∗[A]B} = Tr{AO[B]}, ∀A,B ∈Mn

A measurement on a quantum system can produce different results with some probability

distribution depending on the state ρ. An event regarding such a measurement, which

can occur or cannot, is represented by an effect E: a self-adjoint operator E such that

0 ≤ E ≤ 1. We denote by [0,1] the set of all effects. Obviously, E ≤ 1 means 1−E ≥ 0.

Definition 2.4. We define the quantities

Est (G) :=

∫
G
A(t, s;ω)∗[1]Q( dω) ≡ EQ [1GA(t, s)∗[1]] , G ∈ Ḡst (2.14)
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Ptρ0(G) := Tr
{
E0
t (G)ρ0

}
= EQ [1G Tr{σ(t)}] , G ∈ Ḡ0

t (2.15)

Definition 2.5. Let (Ω,F) be a measurable space; a positive operator-valued measure

(POM) is a map E from F into the set of the effects such that it is normalised and σ-

additive, i.e., E(Ω) = 1 and for any sequence F1, F2, . . . of incompatible events (disjoint

sets) one has E (
⋃∞
k=1 Fk) =

∑∞
k=1E (Fk).

Proposition 2.6. Est is a positive operator-valued measure on the value space
(
Ω, Ḡst

)
and Ptρ0 is a probability measure on the value space

(
Ω, Ḡ0

t

)
. The family of probability

measures
{

Ptρ0 , t > 0
}

is consistent, i.e., Ptρ0(G) = Psρ0(G) for any G ∈ Ḡ0
s with 0 < s <

t. Analogously, we have the consistency of the POMs:

0 ≤ s < t < T, G ∈ Ḡst ⇒ Est (G) = EsT (G)

Let T be an arbitrary positive time. Under the probability PTρ0 , the processes

Ŵj(t) := Wj(t)−
∫ t

0
vj(s) ds, j = 1, . . . ,m, t ∈ [0, T ] (2.16)

are independent,
(
Ḡ0
t

)
-adapted, standard Wiener processes.

Proof. By the properties of A(t, s) we have

0 ≤ EQ [1GA(t, s)∗[1]] ≤ EQ [A(t, s)∗[1]] = T (t, s)∗[1] = 1 .

Then, from the Definition (2.14) one can check that all the properties characterising a

POM hold. The consistency of the POMs follows from the composition property of the

propagator A, the independence of 1GA(t, s)∗ and A(T, t)∗ and T (T, t)∗[1] = 1 :

EsT (G) = EQ [1GA(T, s)∗[1]] = EQ [1GA(t, s)∗ ◦ A(T, t)∗[1]]

= EQ [1GA(t, s)∗ ◦ T (T, t)∗[1]] = EQ [1GA(t, s)∗[1]] = Est (G)

E0
t being a POM and ρ0 a state, Definition (2.15) defines a probability measure. Con-

sistency follows from the fact that Tr{σ(t)} is a martingale or from the consistency of

the POMs. The statement on Ŵ (t) is from corollary 1.44 of Girsanov theorem where

M = Wj ,

L =
m∑
j=1

[∫ t

0
vj(s) dWj(s)−

1

2

∫ t

0
vj(s)

2 ds

]
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and we have

〈Wj , L〉 = 〈Wj ,
m∑
j=1

[∫ t

0
vj(s) dWj(s)−

1

2

∫ t

0
vj(s)

2 ds

]
〉

= 〈Wj ,
m∑
j=1

[∫ t

0
vj(s) dWj(s)

]
〉 =

∫ t

0
vj(s) ds.

The observables of the theory are represented by the POMs E0
t and the pre-measurement

state by ρ0. Then, the physical probabilities are defined by (2.15) and their structure

in terms of a POM and a state guarantees that the usual axioms of quantum mechanics

are not violated. Moreover, we can write

Ptρ0( dω) = Tr{σ(t, ω)}Q( dω)|Ḡ0t

The value space of the POM E0
t is

(
Ω, Ḡ0

t

)
, but Ḡ0

t is generated by W and this allows to

identify the m-dimensional process W with the output. The output of the measurement

has to be considered under the physical probability PTρ0.

The random statistical operator ρ(t) defined in (2.7) can be consistently interpreted as

the state of the system at time t conditional on the output observed up to time t : for

every 0 ≤ s ≤ t ≤ T, the conditional probability PTρ0

(
G|Ḡ0

s

)
of an event G ∈ Ḡst can be

computed using the POM Est defined by (2.14) and just ρ(s) as the conditional state of

the system at time s. Indeed, taken G ∈ Ḡst , for all Ḡ0
s -measurable random variables Y

we have

ETρO [1GY ] = EQ [Tr{σ(t)}1GY ] = EQ
[
Tr
{

EQ
[
1GA(t, s)| Ḡ0

s

]
σ(s)

}
Y
]

= EQ [Tr {EQ [1GA(t, s)]σ(s)}Y ] = EQ [Tr {EQ [1GA(t, s)∗[I]]σ(s)}Y ]

= EQ [Tr {Est (G)σ(s)}Y ] = ETρ0 [Tr {ρ(s)Est (G)}Y ]

This proves that Tr {ρ(s)Est (G)} is the conditional expectation of 1G given Ḡ0
s . So, we

have: ∀G ∈ Ḡst , 0 ≤ s ≤ t ≤ T ,

PTρ0
(
G|Ḡ0

s

)
= Tr {ρ(s)Est (G)}

The random state ρ(t) is called a posteriori state.

The mean of the a posteriori state

η(t) := ETρ0 [ρ(t)] = EQ[σ(t)]
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is the state to be assigned to the system when the result of the observation is not known

or not taken into account; it is known as a priori state. We have

η(0) = ρ0, η(t) = T (t, 0) [ρ0]

By using the composition property A(t, 0) = A(t, s) ◦ A(s, 0) and the fact that A(t, s)

and A(s, 0) are Q-independent, we obtain for 0 ≤ s < t ≤ T

EQ [σ(t)|Fs] = T (t, s)[σ(s)], ETρ0 [ρ(t)|Fs] = T (t, s)[ρ(s)].

By differentiating (2.7) we get a stochastic evolution equation for the a posteriori states,

known in the physical literature as stochastic master equation.

Proposition 2.7. Under the physical probability PTρ0, the a posteriori states satisfy the

nonlinear SDE

dρ(t) = L(t)[ρ(t)] dt+
∑

[Rj(t)ρ(t) + ρ(t)Rj(t)
∗ − vj(t)ρ(t)] dŴj(t) (2.17)

with initial condition ρ(0) = ρ0 ∈ S(H). The quantities vj(t) are real random variables

which depend on ρ(t) and are given by (2.6).

Proof. By using (2.3) and (2.16) we can express the stochastic differential of σ(t) in

terms of the new noise Ŵ :

dσ(t) = L(t)[σ(t)] dt+
m∑
j=1

(Rj(t)σ(t) + σ(t)Rj(t)
∗) dŴj(t)

+
m∑
j=1

(Rj(t)σ(t) + σ(t)Rj(t)
∗) vj(t) dt

From formula (2.5) we have immediately

(Tr{σ(t)})−1 = exp

−
m∑
j=1

[∫ t

0
vj(s) dWj(s)−

1

2

∫ t

0
vj(s)

2 ds

]
= exp

−
m∑
j=1

[∫ t

0
vj(s) dŴj(s) +

1

2

∫ t

0
vj(s)

2 ds

]
by Itô formula we get

d(Tr{σ(t)})−1 = −(Tr{σ(t)})−1
m∑
j=1

vj(t) dŴj(t)
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Finally, by Itô formula for products we get (2.17).

Let us stress that our starting point was the linear SDE (2.3) for σ(t) in the stochastic

basis (Ω,F , (Ft) ,Q) . Then, we constructed the a posteriori states ρ(t) by (2.7) and the

stochastic basis
(
Ω,G,

(
Ḡ0
t

)
,PTρ0

)
. Finally, we showed that, in this new stochastic basis,

ρ(t) satisfies (2.17). So, we have by construction that the nonlinear SDE (2.17) has

a solution in a particular stochastic basis, the by Definition 1.35 we have shown that

(2.17) has a weak solution. If the SDE (2.17) is extended from S(H) to the whole Mn

then it has strong solutions, see Chapter 5 in [1] for more details.
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