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Application background: motivations behind Wasserstein barycenters

Barycenter (center of mass)

Barycenter zµ averages points in a metric
space (E , d) according to the probability
measure µ on E , in the sense that∫

E
d(zµ, y)2 dµ(y) = inf

x∈E

∫
E

d(x, y)2 dµ(y).

Wasserstein barycenters: averaging measures

1. (E , d) → (W2(E), dW )

2. µ → P and zµ → µP

W2(E) is the set of probability measures on E
with finite second-order moments, including µP.

Geometric Awareness
I Structure via base metric space
I Feature-preserving after averaging:

e.g. Gaussians remain Gaussian
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Probability measures are versatile in modelling across different domains



Application background: motivations behind Wasserstein barycenters

Example: µP of P := 1
2δν1 +

1
2δν2

Consider the earth surface (E , d) with uniform
measures ν1, ν2 supported on two regions.

+ barycenter=======⇒ (llama)
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Application background: motivations behind Wasserstein barycenters

Example: averaging Gaussian data

Two sensors returning estimates N (5, 1) and
N (9, 0.8), then averaged in two different ways.

N(5, 1)

N(9, 0.8)

L2 average

Barycenter
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Thesis summary: regularity of Wasserstein barycenters

Absolute continuity Singularity

Example: coloring a cat with brush or pen
Gradient with brush
hue values change continuously =⇒ absolute continuity

Tattoo with pen
curves have zero area =⇒ singularity
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Thesis summary: regularity of Wasserstein barycenters

Absolute continuity [manifolds]
[Contributions of the thesis]

1. lower Ricci curvature bound suffices
2. new class of displacement functional

Singularity [metric trees]
[Contributions of the thesis]

3. reduction and localization techniques
4. rigid properties of barycenters on R

ν1ν2

ν3

0

1

1

1

1
2

1
2

1
2

Example: singularity at the branching point

P := 1
3δν1 +

1
3δν2 +

1
3δν3 =⇒ µP = δ0
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Thesis summary: regularity of Wasserstein barycenters

Absolute continuity [manifolds]
[Contributions of the thesis]

1. lower Ricci curvature bound suffices
2. new class of displacement functional

Singularity [metric trees]
[Contributions of the thesis]

3. reduction and localization techniques
4. rigid properties of barycenters on R

e⃗

T e⃗

0 2 5 7−6

v0 v1

Γ

R

Reduction: flatten w.r.t. a fixed edge ~e

Localization: looping over all edges
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Thesis summary: regularity of Wasserstein barycenters

Absolute continuity [manifolds]
[Contributions of the thesis]

1. lower Ricci curvature bound suffices
2. new class of displacement functional

Singularity [metric trees]
[Contributions of the thesis]

3. reduction and localization techniques
4. rigid properties of barycenters on R

e⃗

T e⃗

0 2 5 7−6

v0 v1

Γ

R

Example: being singular is a rigid property

µP ∈ W2(R) is singular =⇒ P-almost every ν is singular
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Before the thesis: known properties of Wasserstein barycenters
proper: bounded + closed =⇒ compact

Existence, uniqueness, and consistency
[T. Le Gouic and J.-M. Loubes, 2017]
Let (E, d) be a proper metric space.
Any P ∈ W2(W2(E)) has a barycenter.

[F. Santambrogio, 2015]
[Y.-H. Kim and B. Pass, 2017]
Let (M , dg) be a complete Riemannian manifold.
P(a.c. measures) > 0 =⇒ µP is unique.

[T. Le Gouic and J.-M. Loubes, 2017]
Let (E, d) be a proper metric space.
If a sequence Pj → P, then µPj → µP up to a
subsequence.

a.c. = absolutely continuous

Absolute continuity
[M. Agueh and G. Carlier, 2011]
Let ν1, . . . , νn ∈ W2(Rm) be n measures such that
ν1 is a.c. with bounded density. Then the unique
barycenter µP of P :=

∑n
i=1 λi δνi is a.c. with

bounded density.

[Y.-H. Kim and B. Pass, 2017]
Let (M , dg) be a compact Riemannian manifold.
If a measure P ∈ W2(W2(M)) assigns positive mass
to a set of a.c. measures with uniformly bounded
density, then its unique barycenter µP is a.c. with
bounded density.
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Thesis result on absolute continuity of Wasserstein barycenters

[J. Ma, 2023]
Let (M , dg) be a complete Riemannian manifold
with a lower Ricci curvature bound. If a measure
P ∈ W2(W2(M )) assigns positive mass to the set
of a.c. probability measures, then its unique
barycenter µP is also a.c..

Improvements compared to the previous work
[Eliminate technical assumption]
a.c. with uniformly bounded density functions

[No obscure dependency on compactness]
confirm the impact of lower Ricci curvature bound
on the regularity of barycenters

Difficulty: control µP via approximation

P =
n∑

i=1

λi δνi =⇒ µP can be constructed.

However, when P is not finitely supported,
its barycenter µP is only accessible via con-
sistency: as a limit of constructable barycen-
ters µPj with Pj finitely supported.

[Quantitative control: Kim and Pass]
Uniform density bound
[Displacement functional: the thesis]
Weak compactness and Souslin space theory
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Displacement functionals defined for a.c. measures
[(M , dg)]: m-dimensional, with lower Ricci curvature bound 0 (for simplicity).

[P]: P =
∑n

j=1 λj δνj , each supp(νj) is compact, {νi}1≤i≤k are a.c., Λ :=
∑k

i=1 λi .
[G]: G(f · Vol) =

∫
M G(f )d Vol, G satisfies certain properties (defining LG > 0).

G(µP) ≤
k∑

i=1

λi
Λ
G(νi) +

LG
2Λ

(m2 + 2m).

Background: synthetic lower Ricci curvature bound 0

Consider the entropy functional Ent with G(x) := x log x and n = k = 2.
(M , dg) has lower Ricci curvature bound 0 iff:

Ent(µP) ≤ λ1 Ent(ν1) + λ2 Ent(ν2)
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Three steps to prove P(a.c. measures) > 0 =⇒ µP is a.c.

Auxiliary sets B(G,L) := {ν | G(ν) ≤ L}

According to the previous inequality

G(µP) ≤
k∑

i=1

λi

Λ
G(νi) +

LG

2Λ
(m2 + 2m),

if {νi}1≤i≤k ⊂ B(G,L), then µP ∈ B(G,L′).

Properties imposed on G
a. function H (x) := e−x G(ex) has positive and
continuous derivative bounded from above by LG

b. continuous, convex, positive with G(0) = 0

c. lim
x→∞

G(x)
x = +∞

d. increasing

Bound G in approximation

⇓

µP belongs to some
B(G,L′) set and is
thus is a.c..

Compactness in σ(L1,L∞)

⇓

⇐= P assigns positive mass
to a B(G,L) set.

Souslin space theory

⇓

⇐=
P assigns positive mass
to a compact set F

w.r.t. σ(L1,L∞).
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G(µl).

2. For Pj → P and large j,

Pj(B(G,L+1)) ≥ P(B(G,L)) > 0.

Compactness in σ(L1,L∞)

Dunford-Pettis theorem
de la Vallée Poussin criterion

If F is weakly compact, then it is
uniformly integrable, and thus
contained in a B(G,L) set.

Souslin space theory
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continuous derivative bounded from above by LG

b. continuous, convex, positive with G(0) = 0

c. lim
x→∞

G(x)
x = +∞

d. increasing

Bound G in approximation
1. G is lower semi-continuous:

G( lim
l→+∞

µl) ≤ lim inf
l→+∞

G(µl).

2. For Pj → P and large j,

Pj(B(G,L+1)) ≥ P(B(G,L)) > 0.

Compactness in σ(L1,L∞)

Dunford-Pettis theorem
de la Vallée Poussin criterion

If F is weakly compact, then it is
uniformly integrable, and thus
contained in a B(G,L) set.

Souslin space theory
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P is a Radon measure w.r.t. the
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Shifting focus: manifolds −→ metric trees
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Reduction Technique: flatten the tree to solve optimal transport problems

Reduction map T~e : Γ → R associated to ~e

[Metric tree Γ = (V, E , dl)]
Metric dl is induced by length function l : E → R.
Γ is a proper and geodesic metric space.

Reduction preserves Wasserstein distances

For µ, ν ∈ W2(Γ), if supp(µ) ⊂ ~e, then

dW (µ, ν) = dW (T (µ), T (ν)),

where T : W2(Γ) → W2(R) is the induced
push-forward map: T (µ) := T~e

#µ.

Idea of its proof: recover optimal transports
between from R to Γ via ν =

∑
e∈E λeνe.

Properties: 1. T (ν) is a.c. ⇔ ν is a.c.;
2. if T (ν) is singular, then so is ν.
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Localization Technique: extending known results of barycenters

Restriction property of Wasserstein barycenters
Assume the base metric space (E , d) is proper.
For any decomposition of a given barycenter

µP = λµ1 + (1− λ)µ2,

there exist continuous maps F i such that
1. λF1(ν) + (1− λ)F2(ν) = ν;
2. µi is a barycenter of Qi := F i

#P.

[Preserved properties of P]
For any reference measure η on E, if P assigns full
(or positive) mass to measures a.c. w.r.t. η, then so
do the measures Q1 and Q2.

A lemma using reduction technique
Fix an oriented edge ~e of a metric tree Γ.
If a barycenter µP(̊e) = 1, then T (µP) is the
unique barycenter of T#P.

Application: almost absolute continuity on Γ

If P(a.c. measures) > 0, then µP |̊e is a.c. for
any barycenter µP and any edge ~e.

Therefore, if µP is not a.c., then its singular
part is a sum of Dirac measures at vertices.
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Wasserstein barycenters on R: rigid properties

Rigid properties of barycenters on R

A measure property Q is rigid if

µP satisfies Q =⇒ P-almost every ν satisfies Q.

Explicit formula for barycenters

f −1
µP

(t) =
∫
W2(R)

fν−1(t)dP(ν)

Properties proven to be rigid
a. being not a.c.
b. having compact support
c. being a Dirac measure
d. being singular
e. being supported in a negligible set

10 / 11



Wasserstein barycenters on R: rigid properties

Rigid properties of barycenters on R

A measure property Q is rigid if

µP satisfies Q =⇒ P-almost every ν satisfies Q.

Explicit formula for barycenters

f −1
µP

(t) =
∫
W2(R)

fν−1(t)dP(ν)

Properties proven to be rigid
a. being not a.c.
b. having compact support
c. being a Dirac measure
d. being singular
e. being supported in a negligible set

10 / 11



Wasserstein barycenters on R: rigid properties

Rigid properties of barycenters on R

A measure property Q is rigid if

µP satisfies Q =⇒ P-almost every ν satisfies Q.

Explicit formula for barycenters

f −1
µP

(t) =
∫
W2(R)

fν−1(t)dP(ν)

Properties proven to be rigid
a. being not a.c.
b. having compact support
c. being a Dirac measure
d. being singular
e. being supported in a negligible set

10 / 11



Wasserstein barycenters on R: rigid properties

Rigid properties of barycenters on R

A measure property Q is rigid if

µP satisfies Q =⇒ P-almost every ν satisfies Q.

Explicit formula for barycenters

f −1
µP

(t) =
∫
W2(R)

fν−1(t)dP(ν)

[Quantile functions]
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ν − Id
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dP(ν)
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V 1
0

(
f−1
ν

)
+ V 1

0 (Id) dP(ν)

=

∫
W2(R)

f−1
ν (1)− f−1

ν (0) + 1 dP(ν)

= f−1
µP (1)− f−1

µP (0) + 1

= V 1
0

(
f−1
µP + Id
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Future research directions

1. Extending displacement functional arguments to metric measure spaces
2. Quantitative estimates for barycenter densities

3. Necessity of curvature bounds and the role of branching
4. Generalizing reduction techniques to metric graphs
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Example: non-uniqueness of Wasserstein barycenters on metric trees

ν1 = H|e1
e⃗v1

v2

v3

e2

e3

v0
ν2 = 1

2δv1 +
1
2δv2

µP

0 1 2

µ1 = L1|[0,1] µ2 = δ2µQ = 2L1|[1, 32 ]

T e⃗

Γ

R

P = 1
2δν1

+ 1
2δν2

Q = 1
2δµ1

+ 1
2δµ2

3
2

1
2
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