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Application background: motivations behind Wasserstein barycenters

Barycenter (center of mass)
Barycenter 2, averages points in a metric

space (E, d) according to the probability
measure i on E, in the sense that

/Ed(zwy)Qdu(y)inng/Ed(w,y)Zdu(y)
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Application background: motivations behind Wasserstein barycenters

Barycenter (center of mass)
Barycenter 2, averages points in a metric

space (F, d) according to the probability
measure 1, on E, in the sense that

/Ed(zwy)Qdu(y)inng/Ed(w,y)Zdu(y)

J

Wasserstein barycenters: averaging measures
1. (E.d) = (W(B), dw)
2. —Pand 2z, = up

Ws(E) is the set of probability measures on F
with finite second-order moments, including up.
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Probability measures are versatile in modelling across different domains


Application background: motivations behind Wasserstein barycenters

Example: pup of P := %51,1 + %5,/2 Wasserstein barycenters: averaging measures

Consider the earth surface (E, d) with uniform L (E.d) = (W2 (E), dw)

measures vy, Vo supported on two regions. 2. 4 —Pand 2, — up
) "

Ws(E) is the set of probability measures on F

Geometric Awareness

» Structure via base metric space

barycenter

i1+ ¢/ (1lama)

with finite second-order moments, including up.

1/11



Application background: motivations behind Wasserstein barycenters

Example: averaging Gaussian data Wasserstein barycenters: averaging measures

Two sensors returning estimates AV(5,1) and 1. (E,d) —» Wa(E),dw)

N(9,0.8), then averaged in two different ways. 2. ;= Pand 2, = pp

e Ws(E) is the set of probability measures on F
—— NE.08) with finite second-order moments, including up.

------ L? average

----- Barycenter

Geometric Awareness
» Structure via base metric space

> Feature-preserving after averaging:
e.g. Gaussians remain Gaussian
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Thesis summary: regularity of Wasserstein barycenters

Absolute continuity Singularity

Example: coloring a cat with brush or pen

Gradient with brush
hue values change continuously = absolute continuity

Tattoo with pen
curves have zero area = singularity
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Absolute continuity [manifolds] Singularity
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Thesis summary: regularity of Wasserstein barycenters

Absolute continuity [manifolds] Singularity [metric trees]

[Contributions of the thesis] [Contributions of the thesis]
1. lower Ricci curvature bound suffices
2. new class of displacement functional

Example: singularity at the branching point

P:= 30y, + $0u, + 500, = pp = o
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Thesis summary: regularity of Wasserstein barycenters

Absolute continuity [manifolds]

[Contributions of the thesis]
1. lower Ricci curvature bound suffices
2. new class of displacement functional

Singularity [metric trees]

[Contributions of the thesis]
3. reduction and localization techniques

Reduction: flatten w.r.t. a fixed edge €

Localization: looping over all edges
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Thesis summary: regularity of Wasserstein barycenters

Absolute continuity [manifolds] Singularity [metric trees]
[Contributions of the thesis] [Contributions of the thesis]
1. lower Ricci curvature bound suffices 3. reduction and localization techniques
2. new class of displacement functional 4. rigid properties of barycenters on R

r
Example: being singular is a rigid property
up € Wa(R) is singular = P-almost every v is singular
R
—»
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Before the thesis: known properties of Wasserstein barycenters

Existence, uniqueness, and consistency Absolute continuity
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Before the thesis: known properties of Wasserstein barycenters
proper: bounded + closed — compact

Existence, uniqueness, and consistency

[T. Le Gouic and J.-M. Loubes, 2017]

Let (E, d) be a proper metric space.
Any P € Wo(W2(E)) has a barycenter.
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proper: bounded + closed — compact a.c. = absolutely continuous
Existence, uniqueness, and consistency

Let (E, d) be a proper metric space.
Any P € Wo(W2(E)) has a barycenter.
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[Y.-H. Kim and B. Pass, 2017]

Let (M, dg) be a complete Riemannian manifold.
P(a.c. measures) > 0 == pup is unique.
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Before the thesis: known properties of Wasserstein barycenters

proper: bounded + closed — compact

Existence, uniqueness, and consistency

Let (E, d) be a proper metric space.
Any P € Wo(W2(E)) has a barycenter.

Let (M, dg) be a complete Riemannian manifold.

P(a.c. measures) > 0 == pp is unique.

Let (E, d) be a proper metric space.
If a sequence P; — P, then pup, — pp up to a
subsequence.

a.c. = absolutely continuous

Absolute continuity

[M. Agueh and G. Carlier, 2011]

Let v1,...,vn € W2(R™) be n measures such that
v1 is a.c. with bounded density. Then the unique
barycenter pp of P:=>""_| X\id,, is a.c. with
bounded density.
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Before the thesis: known properties of Wasserstein barycenters

proper: bounded + closed — compact a.c. = absolutely continuous

Existence, uniqueness, and consistency Absolute continuity

Let (E, d) be a proper metric space. Let vi,...,vn € W2(R™) be n measures such that
Any P € Wo(W2(E)) has a barycenter. v1 is a.c. with bounded density. Then the unique

barycenter pp of P:=>""_| X\id,, is a.c. with
bounded density.

Let (M, dg) be a complete Riemannian manifold. [Y.-H. Kim and B. Pass, 2017]

P(a.c. measures) > 0 == pup is unique. Let (M, dg) be a compact Riemannian manifold.
If a measure P € W5 (W, (M)) assigns positive mass
to a set of a.c. measures with uniformly bounded

Let (E, d) be a proper metric space. density, then its unique barycenter up is a.c. with
If a sequence P; — P, then pup, — pp up to a bounded density.
subsequence.
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Thesis result on absolute continuity of Wasserstein barycenters

[J. Ma, 2023]

Let (M, dg) be a complete Riemannian manifold
with a lower Ricci curvature bound. If a measure
P € Wy(W>(M)) assigns positive mass to the set
of a.c. probability measures, then its unique
barycenter up is also a.c..
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Thesis result on absolute continuity of Wasserstein barycenters

[J. Ma, 2023]
Let (M, dg) be a complete Riemannian manifold
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P € Wo(Ws(M)) assigns positive mass to the set p—
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i=1
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Thesis result on absolute continuity of Wasserstein barycenters

[J. Ma, 2023] Difficulty: control pp via approximation
Let (M, dg) be a complete Riemannian manifold e & ot
with a lower Ricci curvature bound. If a measure

. . RES i by, — can be constructed.
P € Wo(Ws(M)) assigns positive mass to the set ; v =

of a.c. probability measures, then its unique

barycenter up is also a.c However, when P is not finitely supported,

its barycenter up is only accessible via con-

Improvements compared to the previous work sistency: as a limit of constructable barycen-
ters pp; with P; finitely supported.

[Eliminate technical assumption]

a.c. with-uniformly-bounded-density functions
[Quantitative control: Kim and Pass]

[No obscure dependency on compactness] Uniform density bound
confirm the impact of lower Ricci curvature bound
on the regularity of barycenters

[Displacement functional: the thesis]
Weak compactness and Souslin space theory
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Displacement functionals defined for a.c. measures

[(M,dg)]: m-dimensional, with lower Ricci curvature bound 0 (for simplicity).

[P]: P =37, \jdy,, each supp(v;) is compact, {v;}1<i<k are a.c., A = Z’le g

[G]: G(f - Vol) = [,, G(f)dVol, G satisfies certain properties (defining Lg > 0).

G(pp) <Z ‘Gv (m + 2m).
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Displacement functionals defined for a.c. measures

[(M,dg)]: m-dimensional, with lower Ricci curvature bound 0 (for simplicity).

[P]: P =>""", Ajdy,, each supp(v;) is compact, {v;}1<i<k are a.c., A= S

[G]: G(f - Vol) = [,; G(f)dVol, G satisfies certain properties (defining Lg > 0).

G(up) <Z 'G(v (m +2m).

Background: synthetic lower Ricci curvature bound 0

Consider the entropy functional Ent with G(z) := zlogz and n =k = 2.
(M, dg) has lower Ricci curvature bound 0 iff:

Ent(up) < A; Ent(v1) + Ao Ent(1s)
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Three steps to prove P(a.c. measures) > 0 = pup is a.c.

Auxiliary sets B(G, L) := {v | G(v) < L}

According to the previous inequality

k
Gur) < S0 AG) + 2% (m? + 2m),

if {Vi}lgigk C B(G, L), then e € B(G, L/).

Properties imposed on GG

a. function H(z) := e~ * G(€”) has positive and
continuous derivative bounded from above by L¢
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Three steps to prove P(a.c. measures) > 0 = pup is a.c.

Properties imposed on GG

Auxiliary sets B(G, L) := {v | G(v) < L}

According to the previous inequality

k

Gur) < S0 AG) + 2% (m? + 2m),

i=1

if {Vi}lgigk C B(G, L), then e € B(G, L/).

Bound G in approximation Compactness in o(L', L>) Souslin space theory
I 4 4

P assigns positive mass
= to a compact set F
w.r.t. o(L*, L™).

up belongs to some
B(G, L) set and is =
thus is a.c..

P assigns positive mass
to a B(G, L) set.

6/11



Three steps to prove P(a.c. measures) > 0 = pup is a.c.
Properties imposed on GG

Auxiliary sets B(G, L) := {v | G(v) < L}

According to the previous inequality

k b. continuous, convex, positive with G(0) =0

Ai L
Gup) < D~ FG00) + 55 (m” +2m), &)
=1 C. li{n T =

+o00

if {Vi}lgigk C B(G, L), then e € B(G, L/).

Bound G in approximation Compactness in o(L', L>) Souslin space theory

1. G is lower semi-continuous:

G( lim ;) < HminfG(u).
l—+o0

l—+o0
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Three steps to prove P(a.c. measures) > 0 = pup is a.c.
Properties imposed on GG

Auxiliary sets B(G, L) := {v | G(v) < L}

According to the previous inequality

k
Gur) < S0 AG) + 2% (m? + 2m),

=1
if {Vi}lgigk C B(G, L), then e € B(G, L/). d. increasing
Bound G in approximation Compactness in o(L', L>) Souslin space theory

1. G is lower semi-continuous:

G( lim ;) < HminfG(u).
l—+o0

l—+4o00
2. For P; — P and large j,
Py(B(G, L+1)) > P(B(G, L)) > 0.
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Three steps to prove P(a.c. measures) >0 = pup is a.c.

Properties imposed on G

Auxiliary sets B(G, L) := {v | G(v) < L}

According to the previous inequality

k

Gur) < S0 AG) + 2% (m? + 2m),

i=1

if {Vi}lgigk C B(G, L), then e € B(G, L/).

Bound G in approximation Compactness in o(L', L>) Souslin space theory
1. G is lower semi-continuous: Dunford-Pettis theorem

G( lim ) < l/iln+in\fg(/1,/).

l—+o0
If F is weakly compact, then it is

2. For P; — IP and large j, uniformly integrable

P;(B(G, L+1)) > P(B(G, L)) > 0.
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Three steps to prove P(a.c. measures) >0 = pup is a.c.

Auxiliary sets B(G, L) := {v | G(v) < L}

k

i=1

According to the previous inequality
>\i LG

< == i —

Glur) < 3 F00) + 5%

if {Vi}lgigk C B(G, L), then e € B(G, L/).

Properties imposed on G

a. function H(z) := e~ * G(€”) has positive and
continuous derivative bounded from above by Lg

Bound G in approximation

1. G is lower semi-continuous:

g( L i) < lminfG ().
G, ) < miaf )

2. For P; — PP and large 7,

P;(B(G, L+1)) > P(B(G, L)) > 0.

2
m~ + 2m),
c. lim +o00
T—>00 €T
Compactness in o(L', L>) Souslin space theory

Dunford-Pettis theorem

de la Vallée Poussin criterion

If F is weakly compact, then it is
uniformly integrable, and thus
contained in a B(G, L) set.
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Three steps to prove P(a.c. measures) >0 = pup is a.c.

Auxiliary sets B(G, L) := {v | G(v) < L} Properties imposed on ¢/

k

A

i=1

According to the previous inequality

Gue) < 3 NG + Lo

A (m2 +2m),

if {Vi}lgigk C B(G, L), then e € B(G, L/).

Bound G in approximation

1. G is lower semi-continuous:

G( lim ) < l/im+in\fg(/1,/).

l—+o0

2. For P; — PP and large 7,

P;(B(G, L+1)) > P(B(G, L)) > 0.

Compactness in o(L', L>) Souslin space theory
Dunford-Pettis theorem

de la Vallée Poussin criterion
P is a Radon measure w.r.t. the
If F is weakly compact, then it is o(L*, L™) topology.
uniformly integrable, and thus
contained in a B(G, L) set.
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Shifting focus: manifolds — metric trees

. e—0
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Shifting focus: manifolds — metric trees

1 1 1
P =36, + 300, + 304

. e—0
— O
2

pe = do
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Reduction Technique: flatten the tree to solve optimal transport problems

-

[Metric tree I'=(V, &, d))]
Metric d; is induced by length function [: £ — R.
I" is a proper and geodesic metric space.
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Reduction Technique: flatten the tree to solve optimal transport problems

Reduction map 7€ : I' — R associated to &

[Flatten via the reduction map T°¢]
T¢ is continuous. T¢(€) = [0, I(€)].
Forz €€ yel, d(z,y) =|T(z) — T*(y)|-
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Reduction Technique: flatten the tree to solve optimal transport problems

Reduction preserves Wasserstein distances

For u,v € Wh(T'), if supp(u) C €, then

Reduction map 7€ : I' — R associated to &

F dw () = dw (T (). TO)),
where 7 : Wh(I') = Wh(R) i s’Eelnduced
push-forward map: 7 (p) := T4

R

6 0 2 5 7

[Flatten via the reduction map T
T¢ is continuous. T¢(€) = [0, I(€)].
Forze € yel, dz,y) =|T(z) — T(y)|.
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Reduction preserves Wasserstein distances

For u,v € Wh(T'), if supp(u) C €, then

Reduction map 7€ : I' — R associated to &

F dw () = dw (T (). TO)),
where 7 : Wh(I') = Wh(R) i s’Eelnduced
push-forward map: 7 (p) := T4

R

6 0 2 5 7

Idea of its proof: recover optimal transports
between from R to I via v = 3 o Acve.

[Flatten via the reduction map T
T¢ is continuous. T¢(€) = [0, I(€)].
Forze € yel, dz,y) =|T(z) — T(y)|.
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Reduction Technique: flatten the tree to solve optimal transport problems

Reduction preserves Wasserstein distances

For u,v € Wh(T'), if supp(u) C €, then
dw(p,v) = dw(T (n), T (),

Reduction map 7€ : I' — R associated to &

T
where 7" : W5(I') — Wh(R) is the induced
push-forward map: T (p) := T€4p.
R
5 : —
-0 0 o7 Idea of its proof: recover optimal transports
between from R to I via v = 3 o Acve.
[Flatten via the reduction map T . . . )
T¢ is continuous. T°(&) = [0, I()]. Pro.pertles.. 1. .T(I/) Is a.c. & visac,
Forz €&y eT, dz,y) = | T(z) — T%(y)|. 2. if T(v) is singular, then so is v.
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Localization Technique: extending known results of barycenters

Restriction property of Wasserstein barycenters

Assume the base metric space (E, d) is proper.
For any decomposition of a given barycenter

pp = Ap' + (1= A)p?,

there exist continuous maps F* such that
LAFIW)+ (1= NF?(v) =v;
2. u'is a barycenter of Q := F'4P.
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Localization Technique: extending known results of barycenters

Restriction property of Wasserstein barycenters

Assume the base metric space (E, d) is proper.
For any decomposition of a given barycenter

pp = Ap' + (1= A)p?,

there exist continuous maps F* such that
LAFIv)+ (1= NF?(v) =v;
2. u'is a barycenter of Q := F'4P.

[Preserved properties of P]

For any reference measure n on E, if P assigns full
(or positive) mass to measures a.c. w.r.t. 7, then so
do the measures Q! and Q2.
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Localization Technique: extending known results of barycenters

Restriction property of Wasserstein barycenters

Assume the base metric space (E, d) is proper.
For any decomposition of a given barycenter

pp = Apt + (1= A)p?,

there exist continuous maps F* such that
LAFIW)+ (1= NF?(v) =v;
2. u'is a barycenter of Q := F'4P.

A lemma using reduction technique

Fix an oriented edge € of a metric tree T
If a barycenter up(€) =1, then T (up) is the
unique barycenter of TxP.

Application: almost absolute continuity on T'

If P(a.c. measures) > 0, then up|s is a.c. for
any barycenter up and any edge €.

Therefore, if up is not a.c., then its singular
part is a sum of Dirac measures at vertices.
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Wasserstein barycenters on R: rigid properties

Rigid properties of barycenters on R

A measure property Q is rigid if

pp satisfies @ = P-almost every v satisfies Q.
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Wasserstein barycenters on R: rigid properties

Properties proven to be rigid
a. being not a.c.

Rigid properties of barycenters on R

A measure property Q is rigid if

pp satisfies @ = P-almost every v satisfies Q.
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Wasserstein barycenters on R: rigid properties

Properties proven to be rigid

Rigid properties of barycenters on R

A measure property Q is rigid if b. having compact support

pp satisfies @ = P-almost every v satisfies Q.

Explicit formula for barycenters

1 -1 y
) = /WZ(R)fu (1) dPW)
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Wasserstein barycenters on R: rigid properties

Rigid properties of barycenters on R

A measure property Q is rigid if

pp satisfies @ = P-almost every v satisfies Q.

Explicit formula for barycenters
o= [ 57 ware)
Wa(R)

[Quantile functions]
1. For 0 <t <1, f; ! is defined by

FoH) = inf{z € R [ fu(2) > t}.

2. £71(0), £,71(1): defined as one-sided limits.

Properties proven to be rigid

b. having compact support
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Wasserstein barycenters on R: rigid properties

Properties proven to be rigid

Rigid properties of barycenters on R

A measure property Q is rigid if b. having compact support

pp satisfies @ = P-almost every v satisfies Q.

Explicit formula for barycenters
o= [ 57 ware)
Wa(R)

[Quantile functions]

f71(0) = infsupp(p)
£ (1) = sup supp(y)
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Wasserstein barycenters on R: rigid properties

Properties proven to be rigid

Rigid properties of barycenters on R

A measure property Q is rigid if

up satisfies @ = PP-almost every v satisfies Q. c. being a Dirac measure

Explicit formula for barycenters
o= [ 57 ware)
Wa(R)

[Quantile functions]

u:51<:>f;15x
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Wasserstein barycenters on R: rigid properties

Rigid properties of barycenters on R Properties proven to be rigid

A measure property Q is rigid if

pp satisfies @ = P-almost every v satisfies Q.

d. being singular
Explicit formula for barycenters

1 -1 y
) = /Wz(R)fu (1) dPW)

[Quantile functions]
Consider the special case supp(u) C [0, 1].

. . —1 . .
Ju is singular < f 7" is singular
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Wasserstein barycenters on R: rigid properties

Rigid properties of barycenters on R Properties proven to be rigid

A measure property Q is rigid if

pp satisfies @ = P-almost every v satisfies Q.

d. being singular
Explicit formula for barycenters

o= [ 57 ware)
Wi (R)
[Quantile functions]
Consider the special case supp(u) C [0, 1].

. . —1 . .
Ju is singular < f 7" is singular

AI‘CLeHgth(fH) = || Lebl |[0’1] + il/"HTV =2
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Wasserstein barycenters on R: rigid properties

Rigid properties of barycenters on R Properties proven to be rigid

A measure property Q is rigid if

pp satisfies @ = P-almost every v satisfies Q.

d. being singular
Explicit formula for barycenters

1 -1 y
) = /Wz(R)fu (1) dPW)

[Quantile functions]

Consider the special case supp(u) C [0, 1].

Juis singular <= f"" is singular
ArcLength(f,) = 2 = ArcLength(f; ")
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Wasserstein barycenters on R: rigid properties

Properties proven to be rigid

Rigid properties of barycenters on R

A measure property Q is rigid if

pp satisfies @ = P-almost every v satisfies Q.

d. being singular

Explicit formula for barycenters
- - Vo (fip' —1d) < Ve (7! - 1d) dP
fupl(t) = /W . £, 1(t)dIP(1/) 0 (fuu» ) < /WZ(R) o (f ) dP(v)
2

[Quantile functions]

St is singular iff

Vo (f7t=1d) = Vg (f, ' +1d).
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Wasserstein barycenters on R: rigid properties

Properties proven to be rigid

Rigid properties of barycenters on R

A measure property Q is rigid if

pp satisfies @ = P-almost every v satisfies Q.

d. being singular

Explicit formula for barycenters

i (= /w (®) L (1) dP(v) v (f:! —1d) < /w2<m<> Vo (i ~1d) dP()

<[ v+ v adre)
. . W2 (R)
[Quantile functions]

St is singular iff

Vo (f7t=1d) = Vg (f, ' +1d).
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Future research directions

—

. Extending displacement functional arguments to metric measure spaces

N

. Quantitative estimates for barycenter densities

w

. Necessity of curvature bounds and the role of branching

N

. Generalizing reduction techniques to metric graphs
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Example: non-uniqueness of Wasserstein barycenters on metric trees

U2

€2
Vv = H‘el F
vy €
P = 10,, + 30,
T€
Q= %5l¢1 + %5112
1 = £1|[0’1] HQ = 2£1|[1,%] M2 = 09 R
° é >

Soe

N|—
—
[S][9N)
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