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Definitions see the blackboard ������������������������

Barycenters
I Notion of mean for probability measures µ on metric spaces (E , d)
I Always exist in proper spaces (metric spaces whose bounded closed sets

are compact)

Wasserstein spaces (W(E),W )

I Metric spaces for optimal transport between probability measures on a Polish
space (a complete and separable metric space)

I Wasserstein spaces are Polish spaces.
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Wasserstein barycenters

Definition
Given a Polish space (E , d), the Wasserstein space (W(E),W ) is also Polish, over
which we can construct the Wasserstein space (W(W(E)),W).
Barycenters µ of measures P ∈ W(W(E)) are called Wasserstein barycenters.
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Wasserstein barycenters

Definition
Given a Polish space (E , d), the Wasserstein space (W(E),W ) is also Polish, over
which we can construct the Wasserstein space (W(W(E)),W).
Barycenters µ of measures P ∈ W(W(E)) are called Wasserstein barycenters.

Remark
By definition, P is a probability measure on W(E), its
barycenter µ is thus a probability measure on E .
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Wasserstein barycenters

Definition
Given a Polish space (E , d), the Wasserstein space (W(E),W ) is also Polish, over
which we can construct the Wasserstein space (W(W(E)),W).
Barycenters µ of measures P ∈ W(W(E)) are called Wasserstein barycenters.

Example (Displacement interpolation)
Consider the earth surface (E , d) with two uniform
measures µ, ν supported on two regions. We simulate
the barycenter of 1

2δµ + 1
2δν by discrete points.

���� +�������� barycenter=======⇒ �������(llama)
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Wasserstein barycenters

Definition
Given a Polish space (E , d), the Wasserstein space (W(E),W ) is also Polish, over
which we can construct the Wasserstein space (W(W(E)),W).
Barycenters µ of measures P ∈ W(W(E)) are called Wasserstein barycenters.

Existence [Le Gouic and Loubes, 2017]
Assuming that (E , d) is a proper space, Wasserstein
barycenters in W(E) always exist.
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Structure of Wasserstein barycenters

Fix a proper space (E , d) and n positive real numbers λ1, λ2, . . . , λn such that
∑n

i=1 λi = 1.
Given n measures µ1, µ2, . . . , µn, one can construct a barycenter µ of

∑n
i=1 λi δµi as follows.

Construction of µ := B#γ

1. Let B : En → E be a measurable map (barycenter selection map) sending
(x1, x2, . . . , xn) to a barycenter of

∑n
i=1 λi δxi .

2. Let γ be a measure (multi-marginal optimal transport plan) on En s.t.∫
En

cλ d γ = inf
θ∈Θ

∫
En

cλ d θ with cλ(x1, . . . , xn) := inf
y∈E

n∑
i=1

λi d(xi , y)2,

where Θ is the set of measures on En with marginals µ1, µ2, . . . , µn and γ ∈ Θ.
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Fix a proper space (E , d) and n positive real numbers λ1, λ2, . . . , λn such that
∑n

i=1 λi = 1.
Given n measures µ1, µ2, . . . , µn, one can construct a barycenter µ of

∑n
i=1 λi δµi as follows.

Why µ = B#γ is a barycenter?

Notes of current step

Recall
B sends ~x = (x1, . . . , xn) to a
barycenter of

∑n
i=1 λi δxi ;

γ has marginals µ1, . . . , µn.

n∑
i=1

λiW (µi , µ)
2 ≤

n∑
i=1

λi

∫
En

d(xi ,B(~x))2 d γ(~x)

=
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Why µ = B#γ is a barycenter?
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Notation
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Corollary
Set ν = µ; (proji , B)#γ is
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Properties of Wasserstein barycenter

Consistency [Le Gouic and Loubes, 2017]
Let (E , d) be a proper space. Given a sequence of measures Pj ∈ W(W(E)) with
barycenters µj , if W(Pj ,P) → 0, then µj converges to a barycenter of P up to
extracting a subsequence.

Remark
Construction for finitely many measures + consistency =⇒ general existence.

Indeed, we rely on the consistency to investigate general barycenters.

Uniqueness [Kim and Pass, 2017]
Let (M , dg) be a Riemannian manifold. If P ∈ W(W(M )) gives mass to the set of
absolutely continuous measures, then it has a unique barycenter.
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extracting a subsequence.

Uniqueness [Kim and Pass, 2017]
Let (M , dg) be a Riemannian manifold. If P ∈ W(W(M )) gives mass to the set of
absolutely continuous measures, then it has a unique barycenter.

Absolute continuity [Agueh and Carlier, 2011]
Let µ1, µ2, . . . , µn be n probability measures on Rm. If µ1 is absolutely continuous
with bounded density function, then the unique barycenter of

∑n
i=1 λi δµi is also

absolutely continuous.
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Properties of Wasserstein barycenter

Consistency [Le Gouic and Loubes, 2017]
Let (E , d) be a proper space. Given a sequence of measures Pj ∈ W(W(E)) with
barycenters µj , if W(Pj ,P) → 0, then µj converges to a barycenter of P up to
extracting a subsequence.

Uniqueness [Kim and Pass, 2017]
Let (M , dg) be a Riemannian manifold. If P ∈ W(W(M )) gives mass to the set of
absolutely continuous measures, then it has a unique barycenter.

Absolute continuity [Kim and Pass, 2017]
Let (M , dg) be a compact Riemannian manifold. If P ∈ W(W(M )) gives mass to a set
of absolutely continuous measures with uniformly bounded density functions, then its
unique barycenter is absolutely continuous.
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How to prove absolute continuity

(a.c stands for absolutely continuous)

Absolute continuity and compactness [Kim and Pass, 2017]
Let (M , dg) be a compact Riemannian manifold. If P ∈ W(W(M )) gives mass to a set
of a.c measures with uniformly bounded density functions, then its barycenter is a.c.

Absolute continuity and Ricci curvature bound [Ma, 2023]
Let (M , dg) be a complete Riemannian manifold with a lower Ricci curvature bound.
If P ∈ W(W(M )) gives mass to the set of a.c measures, then its barycenter µ is a.c.
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How to prove absolute continuity

Absolute continuity and Ricci curvature bound [Ma, 2023]
Let (M , dg) be a complete Riemannian manifold with a lower Ricci curvature bound.
If P ∈ W(W(M )) gives mass to the set of a.c measures, then its barycenter µ is a.c.

Sketch of proof, when P =
∑n

i=1 λi δµi and each µi has compact support
Similar to the case of displacement interpolation: locally Lipschitz + compactness

1. When µ1 is a.c and µi ’s for 2 ≤ i ≤ n are Dirac measures, the optimal transport
map from µ to µ1 is locally Lipschitz. (See details later)

2. Apply a divide-and-conquer (conditional measure) argument for the case
when µi , 2 ≤ i ≤ n are discrete measures to retain the Lipschitz estimate.

3. Compactness and Rauch comparison theorem imply a uniform Lipschitz estimate
for approximating sequences of general µi , i ≤ 2 ≤ n.
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Pass to the general case of P by consistency
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i=1 λiδµi and let exp(−∇φi) be the optimal transport map between µ and µi , then

n∑
i=1

λi Hessφi ≥ 0.

Approach of [Kim and Pass, 2017]: apply change of variable formula in the inequality
and bound the density of µ by a uniform upper bound of those of µi ’s.
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How to prove absolute continuity

Absolute continuity and Ricci curvature bound [Ma, 2023]
Let (M , dg) be a complete Riemannian manifold with a lower Ricci curvature bound.
If P ∈ W(W(M )) gives mass to the set of a.c measures, then its barycenter µ is a.c.

Pass to the general case of P by consistency
Hessian equality for Wasserstein barycenters: let µ be the unique a.c barycenter of∑n

i=1 λiδµi and let exp(−∇φi) be the optimal transport map between µ and µi , then

n∑
i=1

λi Hessφi = 0.

Our approach [Ma, 2023]: define nice functionals admitting finite values only for a.c
measures, and bound them from above with the help of Souslin space theory.
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Absolute continuity of Wasserstein barycenters of finitely many measures
Fix P =

∑n
i=1 λi δµi , where µ1 is a.c with compact support and µi = δxi for i ≥ 2.

Its unique barycenter is µ = B#γ, where B is a measurable barycenter selection map
and γ = µ1 ⊗ δx2 ⊗ · · · δxn is the unique coupling of its marginals.

c-conjugating formulation of B
1. Define c(x, y) := 1

2dg(x, y)2 and h(y) := − 1
λ1

∑n
i=2 λi c(xi , y)

2. Given x1 ∈ M , z is a barycenter of ν :=
∑n

i=1 λi δxi

⇐⇒ z reaches the infimum of 2λ1infy∈M{c(x1, y)− h(y)}
3. Define X = supp(µ1) and Y the set of barycenters of ν when x1 runs through X .

The map h is smooth on Y [Kim and Pass, 2015]. Set F := exp(−∇h).

z ∈ Y and x1 = F(z) ⇐⇒ x1 ∈ X and z is a barycenter of ν

Conclusion: F#µ = µ1. Since F is Lipschitz, µ is a.c.
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Displacement functionals for Wasserstein barycenters

Assumptions and notation for the functional G : f · Vol 7→
∫

M G(f ) d Vol

1. m = dim(M ), RicM ≥ −(m − 1)K gM ; P =
∑n

i=1 λi δµi , µi has compact support.
2. µi = gi Vol, 1 ≤ i ≤ k are a.c; the unique barycenter µ = f Vol of P is a.c.
3. G : R+ → R with G(0) = 0 such that H (x) := G(ex)e−x is C1 with non-negative

derivatives bounded above by LH > 0.

Define Λ :=
∑k

i=1 λi , then

G(µ) :=
∫

M
G(f )d Vol ≤

k∑
i=1

λi
Λ

∫
M

G(gi)d Vol+LH K
2Λ

W(P, δµ)2 +
LH
2Λ

(m2 + 2m) .
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Special case: curvature-dimension condition
Take G(x) := x log x, n = k = 2, Λ = LH = 1. Set λ = λ1 and Ent = G, then

Ent(µ) ≤ λEnt(µ1) + (1− λ)Ent(µ2) +
K
2
λ(1− λ)W (µ1, µ2)

2 +
m2

2
+ m .
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Difference from classical displacement functionals
Gradient flow theory (first-order) and displacement convexity (second-order) gives that

G(µi) ≥ G(µ) +
∫

M
∆φi H ′(log f )dµ− LH K

2
W2(µ, µi)

2, 1 ≤ i ≤ k.
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Preservation of absolute continuity when passing to the limit

Reminder of the problem setting
We approximate a general measure P ∈ W(W(M )) with Pj . After proving that the
barycenter µj of Pj is a.c, how to show that the barycenter µ = limµj of P is also a.c?

Use displacement functionals G admitting finite values only for a.c measures
1. Assume G is in addition super-linear and convex, then G is lower semi-continuous;
2. Bound {G(µj)}j≥1 from above, for which we use the displacement inequality;
3. By choosing the sequence Pj properly, it reduces to show that P gives mass to a

B(G,L) set, the set of a.c measures whose values under G are bounded by L > 0;
4. Compact sets w.r.t. the σ(L1,L∞) topology are B(G,L) sets;
5. Souslin space theory implies that several different topologies of a.c measures

generate the same Borel sets, on which P is a Radon measure.

8 / 8



Preservation of absolute continuity when passing to the limit

Reminder of the problem setting
We approximate a general measure P ∈ W(W(M )) with Pj . After proving that the
barycenter µj of Pj is a.c, how to show that the barycenter µ = limµj of P is also a.c?

Use displacement functionals G admitting finite values only for a.c measures
1. Assume G is in addition super-linear and convex, then G is lower semi-continuous;
2. Bound {G(µj)}j≥1 from above, for which we use the displacement inequality;
3. By choosing the sequence Pj properly, it reduces to show that P gives mass to a

B(G,L) set, the set of a.c measures whose values under G are bounded by L > 0;
4. Compact sets w.r.t. the σ(L1,L∞) topology are B(G,L) sets;
5. Souslin space theory implies that several different topologies of a.c measures

generate the same Borel sets, on which P is a Radon measure.

8 / 8



Preservation of absolute continuity when passing to the limit

Reminder of the problem setting
We approximate a general measure P ∈ W(W(M )) with Pj . After proving that the
barycenter µj of Pj is a.c, how to show that the barycenter µ = limµj of P is also a.c?

Use displacement functionals G admitting finite values only for a.c measures
1. Assume G is in addition super-linear and convex, then G is lower semi-continuous;
2. Bound {G(µj)}j≥1 from above, for which we use the displacement inequality;
3. By choosing the sequence Pj properly, it reduces to show that P gives mass to a

B(G,L) set, the set of a.c measures whose values under G are bounded by L > 0;
4. Compact sets w.r.t. the σ(L1,L∞) topology are B(G,L) sets;
5. Souslin space theory implies that several different topologies of a.c measures

generate the same Borel sets, on which P is a Radon measure.

8 / 8



Preservation of absolute continuity when passing to the limit

Reminder of the problem setting
We approximate a general measure P ∈ W(W(M )) with Pj . After proving that the
barycenter µj of Pj is a.c, how to show that the barycenter µ = limµj of P is also a.c?

Use displacement functionals G admitting finite values only for a.c measures
1. Assume G is in addition super-linear and convex, then G is lower semi-continuous;
2. Bound {G(µj)}j≥1 from above, for which we use the displacement inequality;
3. By choosing the sequence Pj properly, it reduces to show that P gives mass to a

B(G,L) set, the set of a.c measures whose values under G are bounded by L > 0;
4. Compact sets w.r.t. the σ(L1,L∞) topology are B(G,L) sets;
5. Souslin space theory implies that several different topologies of a.c measures

generate the same Borel sets, on which P is a Radon measure.

8 / 8



Preservation of absolute continuity when passing to the limit

Reminder of the problem setting
We approximate a general measure P ∈ W(W(M )) with Pj . After proving that the
barycenter µj of Pj is a.c, how to show that the barycenter µ = limµj of P is also a.c?

Use displacement functionals G admitting finite values only for a.c measures
1. Assume G is in addition super-linear and convex, then G is lower semi-continuous;
2. Bound {G(µj)}j≥1 from above, for which we use the displacement inequality;
3. By choosing the sequence Pj properly, it reduces to show that P gives mass to a

B(G,L) set, the set of a.c measures whose values under G are bounded by L > 0;
4. Compact sets w.r.t. the σ(L1,L∞) topology are B(G,L) sets;
5. Souslin space theory implies that several different topologies of a.c measures

generate the same Borel sets, on which P is a Radon measure.

8 / 8



References
Agueh, M. and Carlier, G. (2011). Barycenters in the Wasserstein space.
SIAM Journal on Mathematical Analysis, 43(2):904–924.

Cordero-Erausquin, D., McCann, R. J., and Schmuckenschläger, M. (2001). A Riemannian
interpolation inequality à la Borell, Brascamp and Lieb.
Inventiones mathematicae, 146(2):219–257.

Kim, Y.-H. and Pass, B. (2015). Multi-marginal optimal transport on Riemannian manifolds.
American Journal of Mathematics, 137(4):1045–1060.

Kim, Y.-H. and Pass, B. (2017). Wasserstein barycenters over Riemannian manifolds.
Advances in Mathematics, 307:640–683.

Le Gouic, T. and Loubes, J.-M. (2017). Existence and consistency of Wasserstein barycenters.
Probability Theory and Related Fields, 168(3):901–917.

Ma, J. (2023). Absolute continuity of Wasserstein barycenters on manifolds with a lower Ricci
curvature bound.
arXiv preprint arXiv:2310.13832.



Justifications for the generalized displacement functionals

G(µ) ≤
k∑

i=1

λi
Λ
G(µi) +

LH K
2Λ

W(P, δµ)2 +
LH
2Λ

(m2 + 2m)

Step 1, change of variables
Denote by Fi the optimal transport map from µ to µi , by Jac Fi the Jacobian of Fi .
Since f = g(Fi) Jac Fi , G(µi) =

∫
M H (log f + li)dµ, where li := − log Jac Fi .

By McCann-Brenier theorem, Fi = exp(−∇φi) with φi a c-concave function.
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Step 2, apply Ricci curvature bound
Jacobi equation for d exp(−∇φi) implies li ≥ ∆φi − K‖∇φi‖2/2 for 1 ≤ i ≤ k.
Second variation formula implies m + m2/2 ≥ ∆φi − K‖∇φi‖2/2. [Cordero-Erausquin et al., 2001]



Justifications for the generalized displacement functionals

G(µ) ≤
k∑

i=1

λi
Λ
G(µi) +

LH K
2Λ

W(P, δµ)2 +
LH
2Λ

(m2 + 2m)

Step 1, change of variables
Denote by Fi the optimal transport map from µ to µi , by Jac Fi the Jacobian of Fi .
Since f = g(Fi) Jac Fi , G(µi) =

∫
M H (log f + li)dµ, where li := − log Jac Fi .

By McCann-Brenier theorem, Fi = exp(−∇φi) with φi a c-concave function.

Step 2, apply Ricci curvature bound
Jacobi equation for d exp(−∇φi) implies li ≥ ∆φi − K‖∇φi‖2/2 for 1 ≤ i ≤ k.
Second variation formula implies m + m2/2 ≥ ∆φi − K‖∇φi‖2/2. [Cordero-Erausquin et al., 2001]

Step 3, apply assumptions on H
H (log f + li)− H (log f ) ≥ LH (∆φi − K‖∇φi‖2/2)− LH (m + m2/2).
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Step 3, apply assumptions on H
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Step 4, integrate and apply the Hessian equality
The Hessian equality
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