Absolute continuity of Wasserstein barycenters on manifolds

Jianyu MA, IMT

May 21, 2024, Séminaire PAS, Laboratoire de Mathématiques Blaise Pascal

Definitions

see the blackboard G

Barycenters

- ▶ Notion of mean for probability measures μ on metric spaces (E, d)
- Always exist in proper spaces (metric spaces whose bounded closed sets are compact)

Wasserstein spaces $(\mathcal{W}(E), W)$

- Metric spaces for optimal transport between probability measures on a Polish space (a complete and separable metric space)
- ► Wasserstein spaces are Polish spaces.

Definitions

Barycenters

- ▶ Notion of mean for probability measures μ on metric spaces (E, d)
- Always exist in proper spaces (metric spaces whose bounded closed sets are compact)

Wasserstein spaces $(\mathcal{W}(E), W)$

- Metric spaces for optimal transport between probability measures on a Polish space (a complete and separable metric space)
- ► Wasserstein spaces are Polish spaces.

Definition

Given a Polish space (E, d), the Wasserstein space $(\mathcal{W}(E), W)$ is also Polish, over which we can construct the Wasserstein space $(\mathcal{W}(\mathcal{W}(E)), \mathbb{W})$. Barycenters $\overline{\mu}$ of measures $\mathbb{P} \in \mathcal{W}(\mathcal{W}(E))$ are called Wasserstein barycenters.

Definition

Given a Polish space (E, d), the Wasserstein space $(\mathcal{W}(E), W)$ is also Polish, over which we can construct the Wasserstein space $(\mathcal{W}(\mathcal{W}(E)), \mathbb{W})$. Barycenters $\overline{\mu}$ of measures $\mathbb{P} \in \mathcal{W}(\mathcal{W}(E))$ are called Wasserstein barycenters.

Remark

By definition, $\mathbb P$ is a probability measure on $\mathcal W(E),$ its barycenter $\overline\mu$ is thus a probability measure on E.

Wasserstein barycenters

Definition

Given a Polish space (E, d), the Wasserstein space $(\mathcal{W}(E), W)$ is also Polish, over which we can construct the Wasserstein space $(\mathcal{W}(\mathcal{W}(E)), \mathbb{W})$. Barycenters $\overline{\mu}$ of measures $\mathbb{P} \in \mathcal{W}(\mathcal{W}(E))$ are called Wasserstein barycenters.

Example (Displacement interpolation)

Consider the earth surface (E,d) with two uniform measures μ,ν supported on two regions. We simulate the barycenter of $\frac{1}{2}\delta_{\mu} + \frac{1}{2}\delta_{\nu}$ by discrete points.

 $\blacksquare + \blacksquare \xrightarrow{\text{barycenter}} \cancel{\texttt{m}} (\texttt{llama})$

Wasserstein barycenters

Definition

Given a Polish space (E, d), the Wasserstein space $(\mathcal{W}(E), W)$ is also Polish, over which we can construct the Wasserstein space $(\mathcal{W}(\mathcal{W}(E)), \mathbb{W})$. Barycenters $\overline{\mu}$ of measures $\mathbb{P} \in \mathcal{W}(\mathcal{W}(E))$ are called Wasserstein barycenters.

Existence [Le Gouic and Loubes, 2017]

Assuming that (E, d) is a proper space, Wasserstein barycenters in $\mathcal{W}(E)$ always exist.

Fix a proper space (E, d) and n positive real numbers $\lambda_1, \lambda_2, \ldots, \lambda_n$ such that $\sum_{i=1}^n \lambda_i = 1$. Given n measures $\mu_1, \mu_2, \ldots, \mu_n$, one can construct a barycenter $\overline{\mu}$ of $\sum_{i=1}^n \lambda_i \, \delta_{\mu_i}$ as follows.

1. Let $B: E^n \to E$ be a measurable map (barycenter selection map) sending (x_1, x_2, \ldots, x_n) to a barycenter of $\sum_{i=1}^n \lambda_i \, \delta_{x_i}$.

2. Let γ be a measure (multi-marginal optimal transport plan) on E^n s.t.

$$\int_{E^n} c_\lambda \,\mathrm{d}\,\gamma = \inf_{\theta \in \Theta} \int_{E^n} c_\lambda \,\mathrm{d}\,\theta \quad \text{with } c_\lambda(x_1,\ldots,x_n) := \inf_{y \in E} \sum_{i=1}^n \lambda_i \,d(x_i,y)^2,$$

where Θ is the set of measures on E^n with marginals $\mu_1, \mu_2, \ldots, \mu_n$ and $\gamma \in \Theta$.

Fix a proper space (E, d) and n positive real numbers $\lambda_1, \lambda_2, \ldots, \lambda_n$ such that $\sum_{i=1}^n \lambda_i = 1$. Given n measures $\mu_1, \mu_2, \ldots, \mu_n$, one can construct a barycenter $\overline{\mu}$ of $\sum_{i=1}^n \lambda_i \delta_{\mu_i}$ as follows.

Construction of $\overline{\mu} := B_{\#} \gamma$

1. Let $B: E^n \to E$ be a measurable map (barycenter selection map) sending (x_1, x_2, \ldots, x_n) to a barycenter of $\sum_{i=1}^n \lambda_i \, \delta_{x_i}$.

2. Let γ be a measure (multi-marginal optimal transport plan) on $E^n \mbox{ s.t. }$

$$\int_{E^n} c_{\lambda} \, \mathrm{d}\, \gamma = \inf_{\theta \in \Theta} \int_{E^n} c_{\lambda} \, \mathrm{d}\, \theta \quad \text{with } c_{\lambda}(x_1, \dots, x_n) := \inf_{y \in E} \sum_{i=1}^n \lambda_i \, d(x_i, y)^2,$$

where Θ is the set of measures on E^n with marginals $\mu_1, \mu_2, \ldots, \mu_n$ and $\gamma \in \Theta$.

Fix a proper space (E, d) and n positive real numbers $\lambda_1, \lambda_2, \ldots, \lambda_n$ such that $\sum_{i=1}^n \lambda_i = 1$. Given n measures $\mu_1, \mu_2, \ldots, \mu_n$, one can construct a barycenter $\overline{\mu}$ of $\sum_{i=1}^n \lambda_i \delta_{\mu_i}$ as follows.

Construction of $\overline{\mu} := B_{\#} \gamma$

- 1. Let $B: E^n \to E$ be a measurable map (barycenter selection map) sending (x_1, x_2, \ldots, x_n) to a barycenter of $\sum_{i=1}^n \lambda_i \, \delta_{x_i}$.
- 2. Let γ be a measure (multi-marginal optimal transport plan) on $E^n \mbox{ s.t. }$

$$\int_{E^n} c_{\lambda} \, \mathrm{d}\, \gamma = \inf_{\theta \in \Theta} \int_{E^n} c_{\lambda} \, \mathrm{d}\, \theta \quad \text{with } c_{\lambda}(x_1, \dots, x_n) := \inf_{y \in E} \sum_{i=1}^n \lambda_i \, d(x_i, y)^2,$$

where Θ is the set of measures on E^n with marginals $\mu_1, \mu_2, \ldots, \mu_n$ and $\gamma \in \Theta$.

Fix a proper space (E, d) and n positive real numbers $\lambda_1, \lambda_2, \ldots, \lambda_n$ such that $\sum_{i=1}^n \lambda_i = 1$. Given n measures $\mu_1, \mu_2, \ldots, \mu_n$, one can construct a barycenter $\overline{\mu}$ of $\sum_{i=1}^n \lambda_i \delta_{\mu_i}$ as follows.

Why $\overline{\mu} = B_{\#}\gamma$ is a barycenter?

Notes of current step	
Recall <i>B</i> sends $\vec{x} = (x_1, \dots, x_n)$ to a barycenter of $\sum_{i=1}^n \lambda_i \delta_{x_i}$; γ has marginals μ_1, \dots, μ_n .	

$$\sum_{i=1}^{n} \lambda_{i} W(\mu_{i}, \overline{\mu})^{2} \leq \sum_{i=1}^{n} \lambda_{i} \int_{E^{n}} d(x_{i}, B(\vec{x}))^{2} \,\mathrm{d}\,\gamma(\vec{x})$$
$$= \int_{E^{n}} c_{\lambda}(\vec{x}) \,\mathrm{d}\,\gamma(\vec{x}) \leq \mathbb{E} \,c_{\lambda}(X_{1}, \dots, X_{n})$$
$$\leq \mathbb{E} \sum_{i=1}^{n} \lambda_{i} d(X_{i}, X)^{2} = \sum_{i=1}^{n} \lambda_{i} W(\mu_{i}, \nu)^{2}$$

Fix a proper space (E, d) and n positive real numbers $\lambda_1, \lambda_2, \ldots, \lambda_n$ such that $\sum_{i=1}^n \lambda_i = 1$. Given n measures $\mu_1, \mu_2, \ldots, \mu_n$, one can construct a barycenter $\overline{\mu}$ of $\sum_{i=1}^n \lambda_i \delta_{\mu_i}$ as follows.

Why $\overline{\mu} = B_{\#}\gamma$ is a barycenter?

Notes of current step Recall $c_{\lambda}(\vec{x})$ is the barycenter cost $\inf_{y \in E} \sum_{i=1}^{n} \lambda_i d(x_i, y)^2$

$$\sum_{i=1}^{n} \lambda_{i} W(\mu_{i}, \overline{\mu})^{2} \leq \sum_{i=1}^{n} \lambda_{i} \int_{E^{n}} d(x_{i}, B(\vec{x}))^{2} \,\mathrm{d}\,\gamma(\vec{x})$$
$$= \int_{E^{n}} c_{\lambda}(\vec{x}) \,\mathrm{d}\,\gamma(\vec{x}) \leq \mathbb{E} c_{\lambda}(X_{1}, \dots, X_{n})$$
$$\leq \mathbb{E} \sum_{i=1}^{n} \lambda_{i} d(X_{i}, X)^{2} = \sum_{i=1}^{n} \lambda_{i} W(\mu_{i}, \nu)^{2}$$

Fix a proper space (E, d) and n positive real numbers $\lambda_1, \lambda_2, \ldots, \lambda_n$ such that $\sum_{i=1}^n \lambda_i = 1$. Given n measures $\mu_1, \mu_2, \ldots, \mu_n$, one can construct a barycenter $\overline{\mu}$ of $\sum_{i=1}^n \lambda_i \delta_{\mu_i}$ as follows.

Why $\overline{\mu} = B_{\#}\gamma$ is a barycenter?

Notes of current step

Recall

 γ is an optimal plan w.r.t. c_{λ} ; Choose r.v. X_i with law μ_i .

$$\sum_{i=1}^{n} \lambda_i W(\mu_i, \overline{\mu})^2 \leq \sum_{i=1}^{n} \lambda_i \int_{E^n} d(x_i, B(\vec{x}))^2 \,\mathrm{d}\,\gamma(\vec{x})$$
$$= \int_{E^n} c_\lambda(\vec{x}) \,\mathrm{d}\,\gamma(\vec{x}) \leq \mathbb{E} \,c_\lambda(X_1, \dots, X_n)$$
$$\leq \mathbb{E} \sum_{i=1}^{n} \lambda_i d(X_i, X)^2 = \sum_{i=1}^{n} \lambda_i W(\mu_i, \nu)^2$$

Fix a proper space (E, d) and n positive real numbers $\lambda_1, \lambda_2, \ldots, \lambda_n$ such that $\sum_{i=1}^n \lambda_i = 1$. Given n measures $\mu_1, \mu_2, \ldots, \mu_n$, one can construct a barycenter $\overline{\mu}$ of $\sum_{i=1}^n \lambda_i \delta_{\mu_i}$ as follows.

Why $\overline{\mu} = B_{\#}\gamma$ is a barycenter?

Notes of current step

Notation

X is a new r.v. with arbitrarily chosen law ν ; the coupling (X_i, X) could be optimal.

$$\sum_{i=1}^{n} \lambda_i W(\mu_i, \overline{\mu})^2 \leq \sum_{i=1}^{n} \lambda_i \int_{E^n} d(x_i, B(\vec{x}))^2 \,\mathrm{d}\,\gamma(\vec{x})$$
$$= \int_{E^n} c_\lambda(\vec{x}) \,\mathrm{d}\,\gamma(\vec{x}) \leq \mathbb{E} \,c_\lambda(X_1, \dots, X_n)$$
$$\leq \mathbb{E} \sum_{i=1}^{n} \lambda_i d(X_i, X)^2 = \sum_{i=1}^{n} \lambda_i W(\mu_i, \nu)^2$$

Fix a proper space (E, d) and n positive real numbers $\lambda_1, \lambda_2, \ldots, \lambda_n$ such that $\sum_{i=1}^n \lambda_i = 1$. Given n measures $\mu_1, \mu_2, \ldots, \mu_n$, one can construct a barycenter $\overline{\mu}$ of $\sum_{i=1}^n \lambda_i \delta_{\mu_i}$ as follows.

Why $\overline{\mu} = B_{\#}\gamma$ is a barycenter?

Notes of current step Conclusion Choose (X_i, X) to be optimal. $\overline{\mu}$ is a barycenter since ν is arbitrary.

$$\sum_{i=1}^{n} \lambda_i W(\mu_i, \overline{\mu})^2 \leq \sum_{i=1}^{n} \lambda_i \int_{E^n} d(x_i, B(\vec{x}))^2 \,\mathrm{d}\,\gamma(\vec{x})$$
$$= \int_{E^n} c_\lambda(\vec{x}) \,\mathrm{d}\,\gamma(\vec{x}) \leq \mathbb{E} \,c_\lambda(X_1, \dots, X_n)$$
$$\leq \mathbb{E} \sum_{i=1}^{n} \lambda_i d(X_i, X)^2 = \sum_{i=1}^{n} \lambda_i W(\mu_i, \nu)^2$$

Fix a proper space (E, d) and n positive real numbers $\lambda_1, \lambda_2, \ldots, \lambda_n$ such that $\sum_{i=1}^n \lambda_i = 1$. Given n measures $\mu_1, \mu_2, \ldots, \mu_n$, one can construct a barycenter $\overline{\mu}$ of $\sum_{i=1}^n \lambda_i \delta_{\mu_i}$ as follows.

Why $\overline{\mu} = B_{\#}\gamma$ is a barycenter?

Notes of current step
Corollary Set $\nu = \overline{\mu}$; $(\text{proj}_i, B)_{\#}\gamma$ is thus an optimal transport plan between μ_i and $\overline{\mu}$.

$$\sum_{i=1}^{n} \lambda_i W(\mu_i, \overline{\mu})^2 = \sum_{i=1}^{n} \lambda_i \int_{E^n} d(x_i, B(\vec{x}))^2 \,\mathrm{d}\,\gamma(\vec{x})$$
$$= \int_{E^n} c_\lambda(\vec{x}) \,\mathrm{d}\,\gamma(\vec{x}) \le \mathbb{E} \,c_\lambda(X_1, \dots, X_n)$$
$$\le \mathbb{E} \sum_{i=1}^{n} \lambda_i d(X_i, X)^2 = \sum_{i=1}^{n} \lambda_i W(\mu_i, \overline{\mu})^2$$

Consistency [Le Gouic and Loubes, 2017]

Let (E, d) be a proper space. Given a sequence of measures $\mathbb{P}_j \in \mathcal{W}(\mathcal{W}(E))$ with barycenters $\overline{\mu}_j$, if $\mathbb{W}(\mathbb{P}_j, \mathbb{P}) \to 0$, then $\overline{\mu}_j$ converges to a barycenter of \mathbb{P} up to extracting a subsequence.

Remark

Construction for finitely many measures + consistency \implies general existence.

Indeed, we rely on the consistency to investigate general barycenters.

Consistency [Le Gouic and Loubes, 2017]

Let (E, d) be a proper space. Given a sequence of measures $\mathbb{P}_j \in \mathcal{W}(\mathcal{W}(E))$ with barycenters $\overline{\mu}_j$, if $\mathbb{W}(\mathbb{P}_j, \mathbb{P}) \to 0$, then $\overline{\mu}_j$ converges to a barycenter of \mathbb{P} up to extracting a subsequence.

Uniqueness [Kim and Pass, 2017]

Let (M, d_g) be a Riemannian manifold. If $\mathbb{P} \in \mathcal{W}(\mathcal{W}(M))$ gives mass to the set of absolutely continuous measures, then it has a unique barycenter.

Consistency [Le Gouic and Loubes, 2017]

Let (E, d) be a proper space. Given a sequence of measures $\mathbb{P}_j \in \mathcal{W}(\mathcal{W}(E))$ with barycenters $\overline{\mu}_j$, if $\mathbb{W}(\mathbb{P}_j, \mathbb{P}) \to 0$, then $\overline{\mu}_j$ converges to a barycenter of \mathbb{P} up to extracting a subsequence.

Uniqueness [Kim and Pass, 2017]

Let (M, d_g) be a Riemannian manifold. If $\mathbb{P} \in \mathcal{W}(\mathcal{W}(M))$ gives mass to the set of absolutely continuous measures, then it has a unique barycenter.

Absolute continuity [Agueh and Carlier, 2011]

Let $\mu_1, \mu_2, \ldots, \mu_n$ be *n* probability measures on \mathbb{R}^m . If μ_1 is absolutely continuous with bounded density function, then the unique barycenter of $\sum_{i=1}^n \lambda_i \, \delta_{\mu_i}$ is also absolutely continuous.

Consistency [Le Gouic and Loubes, 2017]

Let (E, d) be a proper space. Given a sequence of measures $\mathbb{P}_j \in \mathcal{W}(\mathcal{W}(E))$ with barycenters $\overline{\mu}_j$, if $\mathbb{W}(\mathbb{P}_j, \mathbb{P}) \to 0$, then $\overline{\mu}_j$ converges to a barycenter of \mathbb{P} up to extracting a subsequence.

Uniqueness [Kim and Pass, 2017]

Let (M, d_g) be a Riemannian manifold. If $\mathbb{P} \in \mathcal{W}(\mathcal{W}(M))$ gives mass to the set of absolutely continuous measures, then it has a unique barycenter.

Absolute continuity [Kim and Pass, 2017]

Let (M, d_g) be a compact Riemannian manifold. If $\mathbb{P} \in \mathcal{W}(\mathcal{W}(M))$ gives mass to a set of absolutely continuous measures with uniformly bounded density functions, then its unique barycenter is absolutely continuous.

(a.c stands for absolutely continuous)

Absolute continuity and compactness [Kim and Pass, 2017] Let (M, d_g) be a compact Riemannian manifold. If $\mathbb{P} \in \mathcal{W}(\mathcal{W}(M))$ gives mass to a set of a.c measures with uniformly bounded density functions, then its barycenter is a.c.

Absolute continuity and Ricci curvature bound [Ma, 2023] Let (M, d_a) be a complete Riemannian manifold with a lower Ricci curvature bound.

If $\mathbb{P} \in \mathcal{W}(\mathcal{W}(M))$ gives mass to the set of a.c measures, then its barycenter $\overline{\mu}$ is a.c.

Absolute continuity and Ricci curvature bound [Ma, 2023] Let (M, d_g) be a complete Riemannian manifold with a lower Ricci curvature bound. If $\mathbb{P} \in \mathcal{W}(\mathcal{W}(M))$ gives mass to the set of a.c measures, then its barycenter $\overline{\mu}$ is a.c.

Sketch of proof, when $\mathbb{P} = \sum_{i=1}^{n} \lambda_i \delta_{\mu_i}$ and each μ_i has compact support Similar to the case of displacement interpolation: locally Lipschitz + compactness

- 1. When μ_1 is a.c and μ_i 's for $2 \le i \le n$ are Dirac measures, the optimal transport map from $\overline{\mu}$ to μ_1 is locally Lipschitz.
- 2. Apply a divide-and-conquer (conditional measure) argument for the case when $\mu_i, 2 \le i \le n$ are discrete measures to retain the Lipschitz estimate.
- 3. Compactness and Rauch comparison theorem imply a uniform Lipschitz estimate for approximating sequences of general $\mu_i, i \leq 2 \leq n$.

Absolute continuity and Ricci curvature bound [Ma, 2023] Let (M, d_g) be a complete Riemannian manifold with a lower Ricci curvature bound. If $\mathbb{P} \in \mathcal{W}(\mathcal{W}(M))$ gives mass to the set of a.c measures, then its barycenter $\overline{\mu}$ is a.c.

Sketch of proof, when $\mathbb{P} = \sum_{i=1}^{n} \lambda_i \delta_{\mu_i}$ and each μ_i has compact support Similar to the case of displacement interpolation: locally Lipschitz + compactness

- 1. When μ_1 is a.c and μ_i 's for $2 \le i \le n$ are Dirac measures, the optimal transport map from $\overline{\mu}$ to μ_1 is locally Lipschitz.
- 2. Apply a divide-and-conquer (conditional measure) argument for the case when $\mu_i, 2 \le i \le n$ are discrete measures to retain the Lipschitz estimate.
- 3. Compactness and Rauch comparison theorem imply a uniform Lipschitz estimate for approximating sequences of general $\mu_i, i \leq 2 \leq n$.

Absolute continuity and Ricci curvature bound [Ma, 2023] Let (M, d_g) be a complete Riemannian manifold with a lower Ricci curvature bound. If $\mathbb{P} \in \mathcal{W}(\mathcal{W}(M))$ gives mass to the set of a.c measures, then its barycenter $\overline{\mu}$ is a.c.

Sketch of proof, when $\mathbb{P} = \sum_{i=1}^{n} \lambda_i \delta_{\mu_i}$ and each μ_i has compact support Similar to the case of displacement interpolation: locally Lipschitz + compactness

- 1. When μ_1 is a.c and μ_i 's for $2 \le i \le n$ are Dirac measures, the optimal transport map from $\overline{\mu}$ to μ_1 is locally Lipschitz.
- 2. Apply a divide-and-conquer (conditional measure) argument for the case when $\mu_i, 2 \le i \le n$ are discrete measures to retain the Lipschitz estimate.
- 3. Compactness and Rauch comparison theorem imply a uniform Lipschitz estimate for approximating sequences of general $\mu_i, i \leq 2 \leq n$.

Absolute continuity and Ricci curvature bound [Ma, 2023] Let (M, d_g) be a complete Riemannian manifold with a lower Ricci curvature bound. If $\mathbb{P} \in \mathcal{W}(\mathcal{W}(M))$ gives mass to the set of a.c measures, then its barycenter $\overline{\mu}$ is a.c.

Pass to the general case of $\ensuremath{\mathbb{P}}$ by consistency

Hessian equality for Wasserstein barycenters: let $\overline{\mu}$ be the unique a.c barycenter of $\sum_{i=1}^{n} \lambda_i \delta_{\mu_i}$ and let $\exp(-\nabla \phi_i)$ be the optimal transport map between $\overline{\mu}$ and μ_i , then

$$\sum_{i=1}^{n} \lambda_i \text{ Hess } \phi_i = 0.$$

Absolute continuity and Ricci curvature bound [Ma, 2023] Let (M, d_g) be a complete Riemannian manifold with a lower Ricci curvature bound. If $\mathbb{P} \in \mathcal{W}(\mathcal{W}(M))$ gives mass to the set of a.c measures, then its barycenter $\overline{\mu}$ is a.c.

Pass to the general case of $\ensuremath{\mathbb{P}}$ by consistency

Hessian equality for Wasserstein barycenters: let $\overline{\mu}$ be the unique a.c barycenter of $\sum_{i=1}^{n} \lambda_i \delta_{\mu_i}$ and let $\exp(-\nabla \phi_i)$ be the optimal transport map between $\overline{\mu}$ and μ_i , then

$$\sum_{i=1}^{n} \lambda_i \operatorname{Hess} \phi_i \ge 0.$$

Approach of [Kim and Pass, 2017]: apply change of variable formula in the inequality and bound the density of $\overline{\mu}$ by a uniform upper bound of those of μ_i 's.

Absolute continuity and Ricci curvature bound [Ma, 2023] Let (M, d_g) be a complete Riemannian manifold with a lower Ricci curvature bound. If $\mathbb{P} \in \mathcal{W}(\mathcal{W}(M))$ gives mass to the set of a.c measures, then its barycenter $\overline{\mu}$ is a.c.

Pass to the general case of $\ensuremath{\mathbb{P}}$ by consistency

Hessian equality for Wasserstein barycenters: let $\overline{\mu}$ be the unique a.c barycenter of $\sum_{i=1}^{n} \lambda_i \delta_{\mu_i}$ and let $\exp(-\nabla \phi_i)$ be the optimal transport map between $\overline{\mu}$ and μ_i , then

$$\sum_{i=1}^{n} \lambda_i \operatorname{Hess} \phi_i = 0.$$

Our approach [Ma, 2023]: define nice functionals admitting finite values only for a.c measures, and bound them from above with the help of Souslin space theory.

Assumptions and notation for the functional $\mathcal{G} : f \cdot \operatorname{Vol} \mapsto \int_M G(f) \operatorname{d} \operatorname{Vol}$

- 1. $m = \dim(M)$, $\operatorname{Ric}_M \ge -(m-1)K g_M$; $\mathbb{P} = \sum_{i=1}^n \lambda_i \, \delta_{\mu_i}$, μ_i has compact support.
- 2. $\mu_i = g_i \operatorname{Vol}, 1 \leq i \leq k$ are a.c; the unique barycenter $\overline{\mu} = f \operatorname{Vol}$ of \mathbb{P} is a.c.
- 3. $G: \mathbb{R}^+ \to \mathbb{R}$ with G(0) = 0 such that $H(x) := G(e^x)e^{-x}$ is \mathcal{C}^1 with non-negative derivatives bounded above by $L_H > 0$.

Define $\Lambda:=\sum_{i=1}^k\lambda_i$, then

$$\mathcal{G}(\overline{\mu}) := \int_M G(f) \,\mathrm{d}\, \mathrm{Vol} \le \sum_{i=1}^k \frac{\lambda_i}{\Lambda} \int_M G(g_i) \,\mathrm{d}\, \mathrm{Vol} + \frac{L_H K}{2\Lambda} \mathbb{W}(\mathbb{P}, \delta_{\overline{\mu}})^2 + \frac{L_H}{2\Lambda} (m^2 + 2m) \,.$$

Assumptions and notation for the functional $\mathcal{G} : f \cdot \operatorname{Vol} \mapsto \int_M G(f) \operatorname{d} \operatorname{Vol}$

1. $m := \dim(M)$, $\operatorname{Ric}_M \ge -(m-1)K g_M$; $\mathbb{P} := \sum_{i=1}^n \lambda_i \delta_{\mu_i}$, μ_i has compact support.

- 2. $\mu_i = g_i \text{ Vol}, 1 \leq i \leq k$ are a.c; the unique barycenter $\overline{\mu} = f \text{ Vol of } \mathbb{P}$ is a.c.
- 3. $G: \mathbb{R}^+ \to \mathbb{R}$ with G(0) = 0 such that $H(x) := G(e^x)e^{-x}$ is \mathcal{C}^1 with non-negative derivatives bounded above by $L_H > 0$.

Define
$$\Lambda := \sum_{i=1}^k \lambda_i$$
, then
 $\mathcal{G}(\overline{\mu}) := \int_M G(f) \,\mathrm{d}\operatorname{Vol} \le \sum_{i=1}^k \frac{\lambda_i}{\Lambda} \int_M G(g_i) \,\mathrm{d}\operatorname{Vol} + \frac{L_H K}{2\Lambda} \mathbb{W}(\mathbb{P}, \delta_{\overline{\mu}})^2 + \frac{L_H}{2\Lambda} (m^2 + 2m) \,.$

Assumptions and notation for the functional $\mathcal{G} : f \cdot \operatorname{Vol} \mapsto \int_M G(f) \operatorname{d} \operatorname{Vol}$

1. $m := \dim(M)$, $\operatorname{Ric}_M \ge -(m-1)K g_M$; $\mathbb{P} := \sum_{i=1}^n \lambda_i \delta_{\mu_i}$, μ_i has compact support.

- 2. $\mu_i = g_i \text{ Vol}, 1 \leq i \leq k$ are a.c; the unique barycenter $\overline{\mu} = f \text{ Vol of } \mathbb{P}$ is a.c.
- 3. $G: \mathbb{R}^+ \to \mathbb{R}$ with G(0) = 0 such that $H(x) := G(e^x)e^{-x}$ is \mathcal{C}^1 with non-negative derivatives bounded above by $L_H > 0$.

Define
$$\Lambda := \sum_{i=1}^{k} \lambda_i$$
, then
 $\mathcal{G}(\overline{\mu}) \leq \sum_{i=1}^{k} \frac{\lambda_i}{\Lambda} \mathcal{G}(\mu_i) + \frac{L_H K}{2\Lambda} \mathbb{W}(\mathbb{P}, \delta_{\overline{\mu}})^2 + \frac{L_H}{2\Lambda} (m^2 + 2m)$.
Special case: curvature-dimension condition

Take $G(x) := x \log x$, n = k = 2, $\Lambda = L_H = 1$. Set $\lambda = \lambda_1$ and $\text{Ent} = \mathcal{G}$, then

$$\operatorname{Ent}(\overline{\mu}) \leq \lambda \operatorname{Ent}(\mu_1) + (1-\lambda) \operatorname{Ent}(\mu_2) + \frac{K}{2}\lambda(1-\lambda) W(\mu_1,\mu_2)^2 + \frac{m^2}{2} + m.$$

Assumptions and notation for the functional $\mathcal{G} : f \cdot \operatorname{Vol} \mapsto \int_M G(f) \operatorname{d} \operatorname{Vol}$

1. $m := \dim(M)$, $\operatorname{Ric}_M \ge -(m-1)K g_M$; $\mathbb{P} := \sum_{i=1}^n \lambda_i \delta_{\mu_i}$, μ_i has compact support.

- 2. $\mu_i = g_i \text{ Vol}, 1 \leq i \leq k$ are a.c; the unique barycenter $\overline{\mu} = f \text{ Vol of } \mathbb{P}$ is a.c.
- 3. $G: \mathbb{R}^+ \to \mathbb{R}$ with G(0) = 0 such that $H(x) := G(e^x)e^{-x}$ is \mathcal{C}^1 with non-negative derivatives bounded above by $L_H > 0$.

Define
$$\Lambda := \sum_{i=1}^k \lambda_i$$
, then
$$\mathcal{G}(\overline{\mu}) \leq \sum_{i=1}^k \frac{\lambda_i}{\Lambda} \mathcal{G}(\mu_i) + \frac{L_H K}{2\Lambda} \mathbb{W}(\mathbb{P}, \delta_{\overline{\mu}})^2 + \frac{L_H}{2\Lambda} (m^2 + 2m) .$$

Difference from classical displacement functionals

Gradient flow theory (first-order) and displacement convexity (second-order) gives that

$$\mathcal{G}(\mu_i) \ge \mathcal{G}(\overline{\mu}) + \int_M \Delta \phi_i \, H'(\log f) \, \mathrm{d}\,\overline{\mu} - \frac{L_H \, K}{2} \, W_2(\overline{\mu}, \mu_i)^2, \quad 1 \le i \le k.$$

Reminder of the problem setting

We approximate a general measure $\mathbb{P} \in \mathcal{W}(\mathcal{W}(M))$ with \mathbb{P}_j . After proving that the barycenter $\overline{\mu}_j$ of \mathbb{P}_j is a.c, how to show that the barycenter $\overline{\mu} = \lim \overline{\mu}_j$ of \mathbb{P} is also a.c?

- 1. Assume G is in addition super-linear and convex, then \mathcal{G} is lower semi-continuous;
- 2. Bound $\{\mathcal{G}(\overline{\mu}_j)\}_{j\geq 1}$ from above, for which we use the displacement inequality;
- 3. By choosing the sequence \mathbb{P}_j properly, it reduces to show that \mathbb{P} gives mass to a B(G, L) set, the set of a.c measures whose values under \mathcal{G} are bounded by L > 0;
- 4. Compact sets w.r.t. the $\sigma(L^1, L^\infty)$ topology are B(G, L) sets;
- 5. Souslin space theory implies that several different topologies of a.c measures generate the same Borel sets, on which \mathbb{P} is a Radon measure.

Reminder of the problem setting

We approximate a general measure $\mathbb{P} \in \mathcal{W}(\mathcal{W}(M))$ with \mathbb{P}_j . After proving that the barycenter $\overline{\mu}_j$ of \mathbb{P}_j is a.c, how to show that the barycenter $\overline{\mu} = \lim \overline{\mu}_j$ of \mathbb{P} is also a.c?

- 1. Assume G is in addition super-linear and convex, then \mathcal{G} is lower semi-continuous;
- 2. Bound $\{\mathcal{G}(\overline{\mu}_j)\}_{j\geq 1}$ from above, for which we use the displacement inequality;
- 3. By choosing the sequence \mathbb{P}_j properly, it reduces to show that \mathbb{P} gives mass to a B(G, L) set, the set of a.c measures whose values under \mathcal{G} are bounded by L > 0;
- 4. Compact sets w.r.t. the $\sigma(L^1, L^\infty)$ topology are B(G, L) sets;
- 5. Souslin space theory implies that several different topologies of a.c measures generate the same Borel sets, on which \mathbb{P} is a Radon measure.

Reminder of the problem setting

We approximate a general measure $\mathbb{P} \in \mathcal{W}(\mathcal{W}(M))$ with \mathbb{P}_j . After proving that the barycenter $\overline{\mu}_j$ of \mathbb{P}_j is a.c, how to show that the barycenter $\overline{\mu} = \lim \overline{\mu}_j$ of \mathbb{P} is also a.c?

- 1. Assume G is in addition super-linear and convex, then \mathcal{G} is lower semi-continuous;
- 2. Bound $\{\mathcal{G}(\overline{\mu}_j)\}_{j\geq 1}$ from above, for which we use the displacement inequality;
- 3. By choosing the sequence \mathbb{P}_j properly, it reduces to show that \mathbb{P} gives mass to a B(G, L) set, the set of a.c measures whose values under \mathcal{G} are bounded by L > 0;
- 4. Compact sets w.r.t. the $\sigma(L^1, L^\infty)$ topology are B(G, L) sets;
- 5. Souslin space theory implies that several different topologies of a.c measures generate the same Borel sets, on which \mathbb{P} is a Radon measure.

Reminder of the problem setting

We approximate a general measure $\mathbb{P} \in \mathcal{W}(\mathcal{W}(M))$ with \mathbb{P}_j . After proving that the barycenter $\overline{\mu}_j$ of \mathbb{P}_j is a.c, how to show that the barycenter $\overline{\mu} = \lim \overline{\mu}_j$ of \mathbb{P} is also a.c?

- 1. Assume G is in addition super-linear and convex, then \mathcal{G} is lower semi-continuous;
- 2. Bound $\{\mathcal{G}(\overline{\mu}_j)\}_{j\geq 1}$ from above, for which we use the displacement inequality;
- 3. By choosing the sequence \mathbb{P}_j properly, it reduces to show that \mathbb{P} gives mass to a B(G, L) set, the set of a.c measures whose values under \mathcal{G} are bounded by L > 0;
- 4. Compact sets w.r.t. the $\sigma(L^1, L^\infty)$ topology are B(G, L) sets;
- 5. Souslin space theory implies that several different topologies of a.c measures generate the same Borel sets, on which \mathbb{P} is a Radon measure.

Reminder of the problem setting

We approximate a general measure $\mathbb{P} \in \mathcal{W}(\mathcal{W}(M))$ with \mathbb{P}_j . After proving that the barycenter $\overline{\mu}_j$ of \mathbb{P}_j is a.c, how to show that the barycenter $\overline{\mu} = \lim \overline{\mu}_j$ of \mathbb{P} is also a.c?

- 1. Assume G is in addition super-linear and convex, then \mathcal{G} is lower semi-continuous;
- 2. Bound $\{\mathcal{G}(\overline{\mu}_j)\}_{j\geq 1}$ from above, for which we use the displacement inequality;
- 3. By choosing the sequence \mathbb{P}_j properly, it reduces to show that \mathbb{P} gives mass to a B(G, L) set, the set of a.c measures whose values under \mathcal{G} are bounded by L > 0;
- 4. Compact sets w.r.t. the $\sigma(L^1, L^\infty)$ topology are B(G, L) sets;
- 5. Souslin space theory implies that several different topologies of a.c measures generate the same Borel sets, on which \mathbb{P} is a Radon measure.

References

- Agueh, M. and Carlier, G. (2011). Barycenters in the Wasserstein space. *SIAM Journal on Mathematical Analysis*, 43(2):904–924.
- Cordero-Erausquin, D., McCann, R. J., and Schmuckenschläger, M. (2001). A Riemannian interpolation inequality à la Borell, Brascamp and Lieb. *Inventiones mathematicae*, 146(2):219–257.
- Kim, Y.-H. and Pass, B. (2015). Multi-marginal optimal transport on Riemannian manifolds. *American Journal of Mathematics*, 137(4):1045–1060.
- Kim, Y.-H. and Pass, B. (2017). Wasserstein barycenters over Riemannian manifolds. Advances in Mathematics, 307:640–683.
- Le Gouic, T. and Loubes, J.-M. (2017). Existence and consistency of Wasserstein barycenters. *Probability Theory and Related Fields*, 168(3):901–917.
 - Ma, J. (2023). Absolute continuity of Wasserstein barycenters on manifolds with a lower Ricci curvature bound.

arXiv preprint arXiv:2310.13832.

Fix $\mathbb{P} = \sum_{i=1}^{n} \lambda_i \, \delta_{\mu_i}$, where μ_1 is a.c with compact support and $\mu_i = \delta_{x_i}$ for $i \ge 2$. Its unique barycenter is $\overline{\mu} = B_{\#}\gamma$, where B is a measurable barycenter selection map and $\gamma = \mu_1 \otimes \delta_{x_2} \otimes \cdots \otimes \delta_{x_n}$ is the unique coupling of its marginals.

c-conjugating formulation of B

- 1. Define $c(x, y) := \frac{1}{2} d_g(x, y)^2$ and $h(y) := -\frac{1}{\lambda_1} \sum_{i=2}^n \lambda_i c(x_i, y)$
- 2. Given $x_1 \in M$, z is a barycenter of $u := \sum_{i=1}^n \lambda_i \, \delta_{x_i}$

 $\iff z$ reaches the infimum of $2\lambda_1 ext{inf}_{y\in M}\{c(x_1,y)-h(y)\}$

3. Define $X = \operatorname{supp}(\mu_1)$ and Y the set of barycenters of ν when x_1 runs through X. The map h is smooth on Y [Kim and Pass, 2015]. Set $F := \exp(-\nabla h)$.

 $z\in Y$ and $x_1=F(z)\iff x_1\in X$ and z is a barycenter of u

Fix $\mathbb{P} = \sum_{i=1}^{n} \lambda_i \, \delta_{\mu_i}$, where μ_1 is a.c with compact support and $\mu_i = \delta_{x_i}$ for $i \ge 2$. Its unique barycenter is $\overline{\mu} = B_{\#}\gamma$, where B is a measurable barycenter selection map and $\gamma = \mu_1 \otimes \delta_{x_2} \otimes \cdots \otimes \delta_{x_n}$ is the unique coupling of its marginals.

$c\text{-}{\rm conjugating}$ formulation of B

- 1. Define $c(x, y) := \frac{1}{2} d_g(x, y)^2$ and $h(y) := -\frac{1}{\lambda_1} \sum_{i=2}^n \lambda_i c(x_i, y)$
- 2. Given $x_1 \in M$, z is a barycenter of $\nu := \sum_{i=1}^n \lambda_i \delta_{x_i}$

 $\iff z$ reaches the infimum of $2\lambda_1 \inf_{y \in M} \{ c(x_1, y) - h(y) \}$

3. Define $X = \operatorname{supp}(\mu_1)$ and Y the set of barycenters of ν when x_1 runs through X. The map h is smooth on Y [Kim and Pass, 2015]. Set $F := \exp(-\nabla h)$.

 $z \in Y$ and $x_1 = F(z) \iff x_1 \in X$ and z is a barycenter of ν

Fix $\mathbb{P} = \sum_{i=1}^{n} \lambda_i \, \delta_{\mu_i}$, where μ_1 is a.c with compact support and $\mu_i = \delta_{x_i}$ for $i \ge 2$. Its unique barycenter is $\overline{\mu} = B_{\#}\gamma$, where B is a measurable barycenter selection map and $\gamma = \mu_1 \otimes \delta_{x_2} \otimes \cdots \otimes \delta_{x_n}$ is the unique coupling of its marginals.

$c\text{-}{\rm conjugating}$ formulation of B

- 1. Define $c(x,y) := \frac{1}{2}d_g(x,y)^2$ and $h(y) := -\frac{1}{\lambda_1}\sum_{i=2}^n \lambda_i c(x_i,y)$
- 2. Given $x_1 \in M$, z is a barycenter of $u := \sum_{i=1}^n \lambda_i \, \delta_{x_i}$

 $\iff z$ reaches the infimum of $2\lambda_1 \inf_{y \in M} \{ c(x_1, y) - h(y) \}$

3. Define $X = \operatorname{supp}(\mu_1)$ and Y the set of barycenters of ν when x_1 runs through X. The map h is smooth on Y [Kim and Pass, 2015]. Set $F := \exp(-\nabla h)$.

 $z \in Y$ and $x_1 = F(z) \iff x_1 \in X$ and z is a barycenter of ν

Fix $\mathbb{P} = \sum_{i=1}^{n} \lambda_i \, \delta_{\mu_i}$, where μ_1 is a.c with compact support and $\mu_i = \delta_{x_i}$ for $i \ge 2$. Its unique barycenter is $\overline{\mu} = B_{\#}\gamma$, where B is a measurable barycenter selection map and $\gamma = \mu_1 \otimes \delta_{x_2} \otimes \cdots \otimes \delta_{x_n}$ is the unique coupling of its marginals.

c-conjugating formulation of B

- 1. Define $c(x,y) := \frac{1}{2}d_g(x,y)^2$ and $h(y) := -\frac{1}{\lambda_1}\sum_{i=2}^n \lambda_i c(x_i,y)$
- 2. Given $x_1 \in M$, z is a barycenter of $u := \sum_{i=1}^n \lambda_i \, \delta_{x_i}$ c-conjugation of h

 $\iff z$ reaches the infimum of $2\lambda_1 \inf_{y \in M} \{ c(x_1, y) - h(y) \}$

3. Define $X = \operatorname{supp}(\mu_1)$ and Y the set of barycenters of ν when x_1 runs through X. The map h is smooth on Y [Kim and Pass, 2015]. Set $F := \exp(-\nabla h)$.

 $z \in Y$ and $x_1 = F(z) \iff x_1 \in X$ and z is a barycenter of ν

Fix $\mathbb{P} = \sum_{i=1}^{n} \lambda_i \, \delta_{\mu_i}$, where μ_1 is a.c with compact support and $\mu_i = \delta_{x_i}$ for $i \ge 2$. Its unique barycenter is $\overline{\mu} = B_{\#}\gamma$, where B is a measurable barycenter selection map and $\gamma = \mu_1 \otimes \delta_{x_2} \otimes \cdots \otimes \delta_{x_n}$ is the unique coupling of its marginals.

c-conjugating formulation of B

- 1. Define $c(x,y) := \frac{1}{2}d_g(x,y)^2$ and $h(y) := -\frac{1}{\lambda_1}\sum_{i=2}^n \lambda_i c(x_i,y)$
- 2. Given $x_1 \in M$, z is a barycenter of $u := \sum_{i=1}^n \lambda_i \, \delta_{x_i}$

 $\iff z$ reaches the infimum of $2\lambda_1 \inf_{y \in M} \{ c(x_1, y) - h(y) \}$

3. Define $X = \operatorname{supp}(\mu_1)$ and Y the set of barycenters of ν when x_1 runs through X. The map h is smooth on Y [Kim and Pass, 2015]. Set $F := \exp(-\nabla h)$.

 $z \in Y$ and $x_1 = F(z) \iff x_1 \in X$ and z is a barycenter of ν

Fix $\mathbb{P} = \sum_{i=1}^{n} \lambda_i \, \delta_{\mu_i}$, where μ_1 is a.c with compact support and $\mu_i = \delta_{x_i}$ for $i \ge 2$. Its unique barycenter is $\overline{\mu} = B_{\#}\gamma$, where B is a measurable barycenter selection map and $\gamma = \mu_1 \otimes \delta_{x_2} \otimes \cdots \otimes \delta_{x_n}$ is the unique coupling of its marginals.

c-conjugating formulation of B

- 1. Define $c(x,y) := \frac{1}{2}d_g(x,y)^2$ and $h(y) := -\frac{1}{\lambda_1}\sum_{i=2}^n \lambda_i c(x_i,y)$
- 2. Given $x_1 \in M$, z is a barycenter of $u := \sum_{i=1}^n \lambda_i \, \delta_{x_i}$

 $\iff z$ reaches the infimum of $2\lambda_1 \inf_{y \in M} \{ c(x_1, y) - h(y) \}$

3. Define $X = \operatorname{supp}(\mu_1)$ and Y the set of barycenters of ν when x_1 runs through X. The map h is smooth on Y [Kim and Pass, 2015]. Set $F := \exp(-\nabla h)$.

$$z \in Y$$
 and $x_1 = F(z) \iff x_1 \in X$ and z is a barycenter of u

$$\mathcal{G}(\overline{\mu}) \leq \sum_{i=1}^{k} \frac{\lambda_i}{\Lambda} \mathcal{G}(\mu_i) + \frac{L_H K}{2\Lambda} \mathbb{W}(\mathbb{P}, \delta_{\overline{\mu}})^2 + \frac{L_H}{2\Lambda} (m^2 + 2m)$$

Step 1, change of variables

Denote by F_i the optimal transport map from $\overline{\mu}$ to μ_i , by Jac F_i the Jacobian of F_i . Since $f = g(F_i) \operatorname{Jac} F_i$, $\mathcal{G}(\mu_i) = \int_M H(\log f + l_i) d\overline{\mu}$, where $l_i := -\log \operatorname{Jac} F_i$.

$$\mathcal{G}(\overline{\mu}) \leq \sum_{i=1}^{k} \frac{\lambda_i}{\Lambda} \mathcal{G}(\mu_i) + \frac{L_H K}{2\Lambda} \mathbb{W}(\mathbb{P}, \delta_{\overline{\mu}})^2 + \frac{L_H}{2\Lambda} (m^2 + 2m)$$

Step 1, change of variables

Denote by F_i the optimal transport map from $\overline{\mu}$ to μ_i , by Jac F_i the Jacobian of F_i . Since $f = g(F_i) \operatorname{Jac} F_i$, $\mathcal{G}(\mu_i) = \int_M H(\log f + l_i) d\overline{\mu}$, where $l_i := -\log \operatorname{Jac} F_i$. By McCann-Brenier theorem, $F_i = \exp(-\nabla \phi_i)$ with ϕ_i a *c*-concave function.

$$\mathcal{G}(\overline{\mu}) \leq \sum_{i=1}^{k} \frac{\lambda_i}{\Lambda} \mathcal{G}(\mu_i) + \frac{L_H K}{2\Lambda} \mathbb{W}(\mathbb{P}, \delta_{\overline{\mu}})^2 + \frac{L_H}{2\Lambda} (m^2 + 2m)$$

Step 1, change of variables

Denote by F_i the optimal transport map from $\overline{\mu}$ to μ_i , by $\operatorname{Jac} F_i$ the Jacobian of F_i . Since $f = g(F_i) \operatorname{Jac} F_i$, $\mathcal{G}(\mu_i) = \int_M H(\log f + l_i) d\overline{\mu}$, where $l_i := -\log \operatorname{Jac} F_i$. By McCann-Brenier theorem, $F_i = \exp(-\nabla \phi_i)$ with ϕ_i a *c*-concave function.

Step 2, apply Ricci curvature bound

Jacobi equation for $d \exp(-\nabla \phi_i)$ implies $l_i \ge \Delta \phi_i - K \|\nabla \phi_i\|^2/2$ for $1 \le i \le k$. Second variation formula implies $m + m^2/2 \ge \Delta \phi_i - K \|\nabla \phi_i\|^2/2$. [Cordero-Erausquin et al., 2001]

$$\mathcal{G}(\overline{\mu}) \leq \sum_{i=1}^{k} \frac{\lambda_i}{\Lambda} \mathcal{G}(\mu_i) + \frac{L_H K}{2\Lambda} \mathbb{W}(\mathbb{P}, \delta_{\overline{\mu}})^2 + \frac{L_H}{2\Lambda} (m^2 + 2m)$$

Step 1, change of variables

Denote by F_i the optimal transport map from $\overline{\mu}$ to μ_i , by $\operatorname{Jac} F_i$ the Jacobian of F_i . Since $f = g(F_i) \operatorname{Jac} F_i$, $\mathcal{G}(\mu_i) = \int_M H(\log f + l_i) d\overline{\mu}$, where $l_i := -\log \operatorname{Jac} F_i$. By McCann-Brenier theorem, $F_i = \exp(-\nabla \phi_i)$ with ϕ_i a *c*-concave function.

Step 2, apply Ricci curvature bound

Jacobi equation for $d \exp(-\nabla \phi_i)$ implies $l_i \ge \Delta \phi_i - K \|\nabla \phi_i\|^2/2$ for $1 \le i \le k$. Second variation formula implies $m + m^2/2 \ge \Delta \phi_i - K \|\nabla \phi_i\|^2/2$. [Cordero-Erausquin et al., 2001]

Step 3, apply assumptions on H $H(\log f + l_i) - H(\log f) \ge L_H(\Delta \phi_i - K \|\nabla \phi_i\|^2/2) - L_H(m + m^2/2).$

$$\mathcal{G}(\overline{\mu}) \leq \sum_{i=1}^{k} \frac{\lambda_i}{\Lambda} \mathcal{G}(\mu_i) + \frac{L_H K}{2\Lambda} \mathbb{W}(\mathbb{P}, \delta_{\overline{\mu}})^2 + \frac{L_H}{2\Lambda} (m^2 + 2m)$$

Step 1, change of variables

Denote by F_i the optimal transport map from $\overline{\mu}$ to μ_i , by $\operatorname{Jac} F_i$ the Jacobian of F_i . Since $f = g(F_i) \operatorname{Jac} F_i$, $\mathcal{G}(\mu_i) = \int_M H(\log f + l_i) \operatorname{d} \overline{\mu}$, where $l_i := -\log \operatorname{Jac} F_i$. By McCann-Brenier theorem, $F_i = \exp(-\nabla \phi_i)$ with ϕ_i a *c*-concave function.

Step 2, apply Ricci curvature bound

Jacobi equation for $d \exp(-\nabla \phi_i)$ implies $l_i \ge \Delta \phi_i - K \|\nabla \phi_i\|^2/2$ for $1 \le i \le k$. Second variation formula implies $m + m^2/2 \ge \Delta \phi_i - K \|\nabla \phi_i\|^2/2$. [Cordero-Erausquin et al., 2001]

Step 3, apply assumptions on H

 $H(\log f + l_i) - H(\log f) \ge L_H(\Delta \phi_i - K \|\nabla \phi_i\|^2/2) - L_H(m + m^2/2).$

Step 4, integrate and apply the Hessian equality

The Hessian equality $\sum_{i=1}^{n} \lambda_i \operatorname{Hess}_x \phi_i = 0$ implies $\sum_{i=1}^{n} \lambda_i \Delta \phi_i(x) = 0$.